Function integral

Calculus Level 3

A continuous real function f f satisfies f ( 2 x ) = 3 f ( x ) f(2x)=3f(x) for all real x x . If 0 1 f ( x ) d x = 1 \displaystyle\int _{ 0 }^{ 1 }{ f\left( x \right) \, dx=1 } , then compute the value of definite integral 1 2 f ( x ) d x \displaystyle \int _{ 1 }^{ 2 }{ f\left( x \right) \, dx } .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Observe that

1 2 f ( x ) d x = 2 1 2 2 2 f ( 2 u ) d u = 2 3 1 2 2 2 f ( x ) d x = ( 2 3 ) 2 1 2 2 2 2 2 f ( x ) d x = , \int_1^2 f(x) dx = 2 \int_{\frac{1}{2}}^{\frac{2}{2}} f(2u) du = 2 \cdot 3 \int_{\frac{1}{2}}^{\frac{2}{2}} f(x) dx = (2 \cdot 3)^2 \int_{\frac{1}{2^2}}^{\frac{2}{2^2}} f(x) dx = \cdots,

and one could generalize this result to

1 2 f ( x ) d x = 6 n 1 2 n 1 2 n 1 f ( x ) d x . \int_1^2 f(x) dx = 6^n \int_{\frac{1}{2^n}}^{\frac{1}{2^{n-1}}} f(x) dx.

Therefore

1 2 f ( x ) d x n = 1 1 6 n = 1 5 1 2 f ( x ) d x = n = 1 1 2 n 1 2 n 1 f ( x ) d x = 0 1 f ( x ) d x = 1. \int_1^2 f(x) dx \sum_{n=1}^\infty \frac{1}{6^n} = \frac{1}{5} \int_1^2 f(x) dx = \sum_{n=1}^\infty \int_{\frac{1}{2^n}}^{\frac{1}{2^{n-1}}} f(x) dx = \int_0^1 f(x)dx = 1.

We conclude:

1 2 f ( x ) d x = 5. \int_1^2 f(x) dx = 5.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...