Function problem 4

Calculus Level 4

If f ( x ) = x 3 + a x 2 + b x + 5 sin 2 x f(x)=x^3+ax^2+bx+5\sin^2x is increasing everywhere then :-

a 2 3 b < 15 a^2-3b<15 a 2 3 b < 15 a^2-3b<-15 a 2 3 b > 15 a^2-3b>15 a 2 3 b > 15 a^2-3b>-15

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Dec 23, 2019

If f ( x ) = x 3 + a x 2 + b x + 5 s i n 2 ( x ) f(x) = x^3 +ax^2 + bx + 5sin^{2}(x) is increasing everywhere, then we require f ( x ) > 0 f'(x) > 0 for all x R . x \in \mathbb{R}. Taking the derivative gives:

f ( x ) = 3 x 2 + 2 a x + b + 5 [ 2 s i n ( x ) c o s ( x ) ] = 3 x 2 + 2 a x + b + 5 s i n ( 2 x ) > 0 f'(x) = 3x^2 + 2ax + b + 5[2sin(x)cos(x)] = 3x^2 + 2ax + b + 5sin(2x) > 0 ;

or 3 x 2 + 2 a x + b > 5 s i n ( 2 x ) 3x^2 + 2ax + b > -5sin(2x) .

Since the maximum value of 5 s i n ( 2 x ) -5sin(2x) equals 5 for all x R x \in \mathbb{R} we require:

3 x 2 + 2 a x + b > 5 3x^2 + 2ax + b > 5 ;

or 3 x 2 + 2 a x + ( b 5 ) > 0 3x^2 + 2ax + (b-5) > 0 ;

or x = 2 a ± 4 a 2 4 ( 3 ) ( b 5 ) 6 ; x = \frac{-2a \pm \sqrt{4a^2 - 4(3)(b-5)}}{6};

or x = a ± a 2 3 b + 15 3 x =\frac{-a \pm \sqrt{a^2 - 3b + 15}}{3} .

If 3 x 2 + 2 a x + ( b 5 ) > 0 3x^2 + 2ax + (b-5) > 0 is true for all real x x , then we require the discriminant to be negative: a 2 3 b + 15 < 0 a 2 3 b < 15 . a^2 - 3b + 15 < 0 \Rightarrow \boxed{a^2 - 3b < -15}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...