This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
If f ( x ) = x 3 + a x 2 + b x + 5 s i n 2 ( x ) is increasing everywhere, then we require f ′ ( x ) > 0 for all x ∈ R . Taking the derivative gives:
f ′ ( x ) = 3 x 2 + 2 a x + b + 5 [ 2 s i n ( x ) c o s ( x ) ] = 3 x 2 + 2 a x + b + 5 s i n ( 2 x ) > 0 ;
or 3 x 2 + 2 a x + b > − 5 s i n ( 2 x ) .
Since the maximum value of − 5 s i n ( 2 x ) equals 5 for all x ∈ R we require:
3 x 2 + 2 a x + b > 5 ;
or 3 x 2 + 2 a x + ( b − 5 ) > 0 ;
or x = 6 − 2 a ± 4 a 2 − 4 ( 3 ) ( b − 5 ) ;
or x = 3 − a ± a 2 − 3 b + 1 5 .
If 3 x 2 + 2 a x + ( b − 5 ) > 0 is true for all real x , then we require the discriminant to be negative: a 2 − 3 b + 1 5 < 0 ⇒ a 2 − 3 b < − 1 5 .