Function and their inverse

Algebra Level 5

f ( x ) = { x + 1 , x 0 ( x 1 ) 2 , x 1 \large f(x)=\begin{cases} -x+1, \quad \ \ \ \ x \leq 0 \\ -(x-1)^2, \quad x \geq 1 \end{cases}

Define the piecewise function of f ( x ) f(x) above, find the number of solution(s) of the equation f ( x ) f 1 ( x ) = 0 f(x)-f^{-1}(x)=0 .


Join the Brilliant Classes and enjoy the excellence.
2 0 1 3 infinitely many 4

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohit Ner
May 15, 2015

f ( x ) f 1 ( x ) = 0 f(x)-f^{-1}(x)=0

f ( f ( x ) ) = x \Rightarrow f\left( f\left( x \right) \right) =x

Case 1: x 0 x\le 0

f ( x ) = x + 1 f\left( x \right) =-x+1 . . . 1 \ge 1

f ( f ( x ) ) = ( f ( x ) 1 ) 2 f\left( f\left( x \right) \right) =-{ \left( f\left( x \right) -1 \right) }^{ 2 }

= ( x + 1 + 1 ) 2 = ( x ) 2 = x 2 =-{ \left( -x+1+1 \right) }^{ 2 }=-{ \left( -x \right) }^{ 2 }=-{ x }^{ 2 }

x = x 2 x = 0 , 1 \Rightarrow x=-{ x }^{ 2 }\Rightarrow x=0,-1

Case 2: x 1 x\ge 1

f ( x ) = ( x 1 ) 2 f\left( x \right) =-{ \left( x-1 \right) }^{ 2 } . . . 0 \le 0

f ( f ( x ) ) = f ( x ) + 1 f\left( f\left( x \right) \right) =-f\left( x \right) +1

= ( x 1 ) 2 + 1 ={ \left( x-1 \right) }^{ 2 }+1

x = ( x 1 ) 2 + 1 x = 1 , 2 \Rightarrow x={ \left( x-1 \right) }^{ 2 }+1\Rightarrow x=1,2

x = 1 , 0 , 1 , 2 \therefore x=-1,0,1,2

Nice. There is a Typo.

= ( x + 1 1 ) 2 = ( x ) 2 = x 2 =-{ \left( -x+1{\Huge \color{#D61F06}{-}}1 \right) }^{ 2 }=-{ \left( -x \right) }^{ 2 }=-{ x }^{ 2 }

Niranjan Khanderia - 5 years, 11 months ago

Log in to reply

This one was an eye opener to me @Sandeep Bhardwaj . Till now I used to think that the only solution would lie on y=x or else infinite solutions, when the function is the inverse of itself

Thanks

Mayank Singh - 5 years, 7 months ago

Log in to reply

My pleasure! The same was my intention to post this problem. ¨ \ddot \smile

Sandeep Bhardwaj - 5 years, 7 months ago

In region x 0 x\leqslant0 f 1 ( x ) = f ( x ) \quad\quad f^{-1}(x)=f(x) . f ( x + 1 ) = ( x + 1 ) + 1 = x 1 + 1 = x f(-x+1)=-(-x+1)+1=x-1+1=x , so why are there not infinitely many solutions.

Miloje Đukanović - 5 years, 8 months ago

why cant we do this by graph

Shubham Rustagi - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...