Function with Exponential

Algebra Level 2

f f is a function on the positive reals which satisfies the equation [ f ( x 2 + 1 ) ] x = 16 \left[ f\left(x^2 +1 \right) \right]^{\sqrt{x}} = 16 . What is the value of

[ f ( 16 + y 2 y 2 ) ] 1 y ? \large \left[ f\left( \frac {16+y^2} {y^2} \right) \right] ^{ \large{ \frac {1}{\sqrt{y}} } } ?

8 4 1 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

13 solutions

Lorenc Bushi
Dec 31, 2013

Observe: 16 + y 2 y 2 = ( 4 y ) 2 + 1 \frac{16+y^2}{y^2}=(\frac{4}{y})^2+1 therefore it does not take too long for us to realise that we must make the substitution x = 4 y x=\frac{4}{y} and by doing this we get:

f ( 16 + y 2 y 2 ) 2 y = 16 f(\frac{16+y^2}{y^2})^{\frac{2}{\sqrt{y}}}=16 or

( f ( 16 + y 2 y 2 ) 1 y ) 2 = 16 (f(\frac{16+y^2}{y^2})^{\frac{1}{\sqrt{y}}})^2=16 and therefore

f ( 16 + y 2 y 2 ) 1 y = 16 = 4 f(\frac{16+y^2}{y^2})^{\frac{1}{\sqrt{y}}}=\sqrt{16}=4

You took the positive value of 16 \sqrt{16} as the answer because the function is defined on the positive reals, am I right ??

Prasun Biswas - 7 years, 4 months ago
Muhammad Shariq
Dec 30, 2013

First note that 16 + y 2 y 2 = 16 y 2 + 1 = ( 4 y ) 2 + 1 \large \frac{16+y^2}{y^2}=\frac{16}{y^2}+1= \left(\frac{4}{y}\right)^2+1 . Then letting x = 4 y \large x=\frac{4}{y} we get:

f ( ( 4 y ) 2 + 1 ) 2 y = 16 \large f \left(\left(\frac{4}{y}\right)^2+1\right)^\frac{2}{\sqrt{y}}=16

Raising both sides to the exponent 1 2 \large \frac{1}{2} gives us:

f ( ( 4 y ) 2 + 1 ) 2 y = f ( ( 4 y ) 2 + 1 ) 1 y = 16 = ± 4 \large \sqrt{f \left(\left(\frac{4}{y}\right)^2+1\right)^\frac{2}{\sqrt{y}}}=f \left(\left(\frac{4}{y}\right)^2+1\right)^\frac{1}{\sqrt{y}}=\sqrt{16}=\pm 4

We take the principal root and so our answer is 4 \boxed{4} .

Can you explain why you take the "principal root"?

Jorge Tipe - 7 years, 5 months ago

Log in to reply

Because answers to Brilliant are positive integers in the range [0,999] (inclusive). Nah I'm joking lol. It's because the function is defined on the positive reals.

Muhammad Shariq - 7 years, 5 months ago
Romeo Gomez
Dec 31, 2013

First of all I'm going to do some algebra, 16 + y 2 y 2 = 16 y 2 + 1 = ( 4 y ) 2 + 1. \frac{16+y^2}{y^2} =\frac{16}{y^2}+1=(\frac{4}{y})^2 +1. On the other hand f ( x 2 + 1 ) x = 16 f ( x 2 + 1 ) = ( 16 ) 1 x . f(x^2 +1)^{\sqrt{x}}=16\\ f(x^2 +1)=(16)^{\frac{1}{\sqrt{x}}}. Define x = 4 y , x=\frac{4}{y}, and substituting x

f ( ( 4 y ) 2 + 1 ) = 1 6 1 4 y f ( ( 4 y ) 2 + 1 ) = 1 6 y 2 f ( ( 4 y ) 2 + 1 ) = 1 6 1 2 y f ( ( 4 y ) 2 + 1 ) = 16 y f ( ( 4 y ) 2 + 1 ) = 4 y f ( ( 4 y ) 2 + 1 ) 1 y = 4. f((\frac{4}{y})^2 + 1)=16^{\frac{1}{\sqrt{\frac{4}{y}}}} \\ f((\frac{4}{y})^2 + 1)=16^{\frac{\sqrt{y}}{2}}\\ f((\frac{4}{y})^2 + 1)=16^{\frac{1}{2}\sqrt{y}} \\ f((\frac{4}{y})^2 + 1)=\sqrt{16}^{\sqrt{y}} \\ f((\frac{4}{y})^2 + 1)=4^{\sqrt{y}} \\ f((\frac{4}{y})^2 + 1)^{\frac{1}{\sqrt{y}}}=4. Hence f ( 16 + y 2 y 2 ) 1 y = 4 f( \frac{16+y^2}{y^2} )^{\frac{1}{\sqrt{y}}}=4

very good

Rishabh Jain - 7 years, 5 months ago

what.... the....hell.... so genius

Haikal Fisabililah - 7 years, 5 months ago

Simplify f ( 16 + y 2 y 2 ) 1 y f(\frac{16+y^{2}}{y^{2}})^{\frac{1}{\sqrt{y}}} we get...

f ( 16 + y 2 y 2 ) 1 y f(\frac{16+y^{2}}{y^{2}})^{\frac{1}{\sqrt{y}}}

= f ( 16 y 2 + 1 ) 1 y =f(\frac{16}{y^{2}}+1)^{\frac{1}{\sqrt{y}}}

Substitute x = 4 y x = \frac{4}{y} -> 1 y = x 2 \frac{1}{\sqrt{y}} = \frac{\sqrt{x}}{2} -> 16 y 2 = x 2 \frac{16}{y^{2}} = x^{2}

f ( x 2 + 1 ) x 2 f(x^{2}+1)^{\frac{\sqrt{x}}{2}}

= f ( x 2 + 1 ) x =\sqrt{f(x^{2}+1)^{\sqrt{x}}}

= 16 = 4 =\sqrt{16} = \boxed{4} ~~~

Well, first, all the information we have about the function is the relation that is shown in the problem. So, for avoiding further complication, we will require that the argument of f f to be equal on both cases, i.e.,

x 2 + 1 = 16 + y 2 y 2 1 y = x 2 x^{2} + 1 = \frac{16 + y^{2}}{y^{2}} \therefore \frac{1}{\sqrt{y}} = \frac{\sqrt{x}}{2}

Now it is easy to see that

[ f ( 16 + y 2 y 2 ) ] 1 y = [ f ( x 2 + 1 ) ] x 2 = 16 = 4 \left [ f \left ( \frac{16 + y^{2}}{y^{2}} \right ) \right ]^{\frac{1}{\sqrt{y}}} = \left [ f \left ( x^{2} + 1 \right ) \right ]^{\frac{\sqrt{x}}{2}} = \sqrt{16} = 4

Ahaan Rungta
Dec 31, 2013

Cheap : If x = 4 x = 4 , we have

f ( 17 ) 4 = f ( 17 ) 2 = 16 f ( 17 ) = ± 4. f \left( 17 \right)^{\sqrt{4}} = f \left( 17 \right)^2 = 16 \implies f(17) = \pm 4.

Since f f is a function on the positive reals, f ( 17 ) = 4 f(17) = 4 .

Now, if y = 1 y = 1 , we have:

f ( 16 + y 2 y 2 ) 1 y = f ( 17 ) 1 = f ( 17 ) = 4 . f \left( \dfrac {16+y^2}{y^2} \right)^{\frac{1}{\sqrt{y}}} = f \left( 17 \right)^1 = f(17) = \boxed {4}.

nice.

Niranjan Khanderia - 7 years, 3 months ago

In order to solve this problem, we should try to get the function f ( 16 + y 2 y 2 ) 1 y f(\frac{16+y^{2}}{y^{2}})^{\frac{1}{\sqrt{y}}} to look like something we know: f ( x 2 + 1 ) x f(x^{2}+1)^{\sqrt{x}} .
With some algebraic manipulation we find that: f ( 16 + y 2 y 2 ) 1 y = f ( 16 y 2 + 1 ) 1 y = f ( ( 4 y ) 2 + 1 ) 2 y × 1 2 f(\frac{16+y^{2}}{y^{2}})^{\frac{1}{\sqrt{y}}} = f(\frac{16}{y^{2}} + 1)^{\frac{1}{\sqrt{y}}} = f((\frac{4}{y})^{2}+1)^{\frac{2}{\sqrt{y}} \times \frac{1}{2}} .
Now, if we set x = 4 y x=\frac{4}{y} , we find that f ( ( 4 y ) 2 + 1 ) 2 y × 1 2 = ( f ( x 2 + 1 ) x ) 1 2 f((\frac{4}{y})^{2}+1)^{\frac{2}{\sqrt{y}} \times \frac{1}{2}} = (f(x^{2}+1)^{\sqrt{x}})^{\frac{1}{2}}
Since we know f ( x 2 + 1 ) x = 16 f(x^{2}+1)^{\sqrt{x}} = 16 , the ( f ( x 2 + 1 ) x ) 1 2 (f(x^{2}+1)^{\sqrt{x}})^{\frac{1}{2}} is just 1 6 1 2 = 16 = 4 16^{\frac{1}{2}} = \sqrt{16} = \boxed{4}


Hey! Instead of all that, here's an easier one, I feel! Now, in the required function, let's substitute a value for y! The simplest value that comes to my mind is y = 0! But as that;'s not possible, let's put y = 1! The required function now becomes f(17). Put x = 4 in the first function to obtain the value of f(17) = 4

Thus, the required value is 4

Cheers!

SR Somayaji - 7 years, 5 months ago

Log in to reply

Choosing values for variables are not always work for any other problems, but that's another solution.

It looks stupid, but if it works, it's not stupid!

Cheers!

Samuraiwarm Tsunayoshi - 7 years, 5 months ago
Prasun Biswas
Feb 9, 2014

The function f f is given such that [ f ( x 2 + 1 ) ] x = 16 [f(x^2+1)]^{\sqrt{x}}=16 and f f is a function on the positive reals. Then, we have --

[ f ( 16 + y 2 y 2 ) ] 1 y [f(\frac{16+y^2}{y^2})]^{\frac{1}{\sqrt{y}}}

= [ f ( 16 y 2 + 1 ) ] 1 y =[f(\frac{16}{y^2}+1)]^{\frac{1}{\sqrt{y}}}

= [ f ( ( 4 y ) 2 + 1 ) ] 2 y × 1 2 =[f((\frac{4}{y})^2+1)]^{\frac{2}{\sqrt{y}}\times \frac{1}{2}}

= ( [ f ( ( 4 y ) 2 + 1 ) ] 2 y ) 1 2 =([f((\frac{4}{y})^2+1)]^{\frac{2}{\sqrt{y}}})^{\frac{1}{2}}

= ( 16 ) 1 2 =(16)^{\frac{1}{2}} [since, if we replace x x in [ f ( x 2 + 1 ) ] x = 16 [f(x^2+1)]^{\sqrt{x}}=16 with 4 y \frac{4}{y} , then we get ( [ f ( ( 4 y ) 2 + 1 ) ] 2 y ) = 16 ([f((\frac{4}{y})^2+1)]^{\frac{2}{\sqrt{y}}})=16 ]

= 4 =\boxed{4} [Neglecting (-4) as the function is defined on (+ve) reals]

Subhro C
Jan 7, 2014

Use ( 4 / y ) = z (4/y) = z Given LHS reduces to [ f ( z 2 + 1 ) ] z / 2 = ( 16 ) 1 / 2 = ( 2 4 ) 1 / 2 = 4 [f(z^{2} + 1)]^{\sqrt{z}/2} = (16)^{1/2} =( 2^{4})^{1/2} = 4

cool

Niranjan Khanderia - 7 years, 3 months ago
David Austen
Jan 4, 2014

Take x = 4 y x=\frac{4}{y} and from this ( f ( ( 16 + y 2 ) / ( y 2 ) ) ) 1 y = f ( x 2 + 1 ) x / 2 = 4 \left( f((16+y^2)/(y^2)) \right)^{\frac{1}{\sqrt{y}}}=f(x^2+1)^{\sqrt{x}/2} = 4

Andres Fabrega
Jan 3, 2014

Let x 2 = 16 y 2 x^{2} = \frac {16}{y^{2}} . [ f ( 16 y 2 + 1 ) ] 2 y = [ f ( 16 + y 2 y 2 ) ] 2 y = 16 \Rightarrow [f(\frac {16}{y^{2}} + 1)]^{\frac {2}{\sqrt{y}}} = [f(\frac {16 + y^{2}}{y^{2}})]^{\frac {2}{\sqrt{y}}} = 16

Then, taking the square root of both sides yields: [ f ( 16 + y 2 y 2 ) ] 1 y = 4 \boxed{[f(\frac {16 + y^{2}}{y^{2}})]^{\frac {1}{\sqrt{y}}} = 4}

Oh by the way, the answer is + 4 + 4 instead of 4 - 4 because the function is on the positive reals. Therefore, we take the positive answer.

Andres Fabrega - 7 years, 5 months ago
Shivam Dangi
Jan 1, 2014

let x =x\4 the the above equation become f{(16+x x)/x x} to the power 2/xto the power 1\2 that will give y=4

Raj Magesh
Dec 31, 2013

We can rewrite the given argument as:

16 + y 2 y 2 = 16 y 2 + 1 = ( 4 y ) 2 + 1 \dfrac{16+y^{2}}{y^{2}} = \dfrac{16}{y^{2}} + 1 = \left(\dfrac{4}{y}\right)^{2} + 1

This is the same structure as the argument of the given function, where x = 4 y x = \frac{4}{y} !

Then:

f ( x 2 + 1 ) x = f ( ( 4 y ) 2 + 1 ) 4 y = f ( ( 4 y ) 2 + 1 ) 2 y \begin{aligned}f \left( x^{2} + 1 \right) ^ {\sqrt{x}} &= f\left(\left(\dfrac{4}{y}\right)^{2} + 1\right)^{\sqrt{\dfrac{4}{y}}}\\ &= f\left(\left(\dfrac{4}{y}\right)^{2} + 1\right)^{\dfrac{2}{\sqrt{y}}}\end{aligned}

This above expression is the square of the required value (look at the exponent). But this expression is equal to f ( x 2 + 1 ) x = 16 f \left( x^{2} + 1 \right) ^ {\sqrt{x}} = 16 . Hence,

f ( 16 + y 2 y 2 ) 1 y = 16 = 4 f\left(\dfrac{16+y^{2}}{y^{2}}\right)^{\dfrac{1}{\sqrt{y}}} = \sqrt{16} = \boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...