Let satisfy the equation
.
If , then find the absolute value of difference between maximum and minimum value of on the interval .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
( x − y ) f ( x + y ) − ( x + y ) f ( x − y ) f ( 2 x − 1 ) − ( 2 x − 1 ) f ( 1 ) f ( 2 x − 1 ) + 2 ( 2 x − 1 ) f ( 2 x − 1 ) f ( 2 x − 1 ) ⟹ f ( x ) = 4 x y ( x 2 − y 2 ) = 4 x ( x − 1 ) ( x − y ) ( x + y ) = ( 4 x 2 − 4 x ) ( 2 x − 1 ) = ( 2 x − 1 ) ( 4 x 2 − 4 x − 2 ) = ( 2 x − 1 ) ( ( 2 x − 1 ) 2 − 3 ) = x ( x 2 − 3 ) Let y = x − 1 Given that f ( 1 ) = − 2 Replace 2 x − 1 with x .
Note that f ( ± 3 ) = 0 . The local maximum and minimun within [ − 3 , 3 ] are when d x d f ( x ) = 3 x 2 − 3 = 0 or x = ± 1 . Since d x d 2 f ( x ) = 6 x . f ( − 1 ) = − 1 ( ( − 1 ) 2 − 3 ) = 2 is the local maximum and f ( 1 ) = 1 ( 1 2 − 3 ) = − 2 . the minimum. Therefore, ∣ 2 − ( − 2 ) ∣ = 4 .