The polynomial has roots
We are also told that:
Find the minimum positive value of
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
For angles θ 1 , θ 2 , θ 3 , … , θ 5 2 , tangent of their sum is
tan ( θ 1 + θ 2 + θ 3 + … + θ 5 2 ) = 1 − S 2 + S 4 − S 6 + S 8 + … − S 5 0 + S 5 2 S 1 − S 3 + S 5 − S 7 + … − S 4 9 + S 5 1
where S n is the sum of tangents of angles taking n at a time. Let's reduce our function to the above equation.
Putting x = i in f ( x ) .
f ( i ) = ( i ) 5 2 + a 1 ( i ) 5 1 + a 2 ( i ) 5 0 + … + a 5 1 i + a 5 2 f ( i ) = 1 − a 1 i − a 2 + a 3 i + … + a 5 1 i + a 5 2
Putting x = − i in f ( x ) .
f ( − i ) = ( − i ) 5 2 + a 1 ( − i ) 5 1 + a 2 ( − i ) 5 0 + … + a 5 1 ( − i ) + a 5 2 f ( − i ) = 1 + a 1 i − a 2 − a 3 i + … − a 5 1 i + a 5 2
Subtracting f ( i ) from f ( − i )
f ( − i ) − f ( i ) = 2 a 1 i − 2 a 3 i + 2 a 5 i − 2 a 7 i + … − 2 a 5 1 i 2 i f ( − i ) − f ( i ) = a 1 − a 3 + a 5 − a 7 + … − a 5 1 … … ( 1 )
Adding f ( i ) and f ( − i )
f ( − i ) + f ( i ) = 2 − 2 a 2 + 2 a 4 − 2 a 6 + … − 2 a 5 0 + 2 a 5 2 2 f ( − i ) + f ( i ) = 1 − a 2 + a 4 − a 6 + … − a 5 0 + a 5 2 … … ( 2 )
Dividing ( 2 ) from ( 1 )
i 1 f ( − i ) + f ( i ) f ( − i ) − f ( i ) = 1 − a 2 + a 4 − a 6 + … − a 5 0 + a 5 2 a 1 − a 3 + a 5 − a 7 + … − a 5 1
Now, for a polynomial, a 2 n + 1 = − S 2 n + 1 and a 2 n = S 2 n for each natural n . Putting it
i 1 f ( − i ) + f ( i ) f ( − i ) − f ( i ) = − 1 − S 2 + S 4 − S 6 + … − S 5 0 + S 5 2 S 1 − S 3 + S 5 − S 7 + … − S 5 1
i f ( − i ) + f ( i ) f ( − i ) − f ( i ) = 1 − S 2 + S 4 − S 6 + … − S 5 0 + S 5 2 S 1 − S 3 + S 5 − S 7 + … − S 5 1
As roots of f ( x ) are tan θ 1 , tan θ 2 , tan θ 3 , … , tan θ 5 2 , So
tan ( θ 1 + θ 2 + θ 3 + … + θ 5 2 ) = i f ( − i ) + f ( i ) f ( − i ) − f ( i )
Putting values of f ( − i ) = i ( 2 + 3 ) + 1 and f ( i ) = i ( 2 + 3 ) − 1
tan ( θ 1 + θ 2 + θ 3 + … + θ 5 2 ) = i ( i ( 2 + 3 ) + 1 ) + ( i ( 2 + 3 ) − 1 ) ( i ( 2 + 3 ) + 1 ) − ( i ( 2 + 3 ) − 1 )
tan ( θ 1 + θ 2 + θ 3 + … + θ 5 2 ) = 2 − 3
θ 1 + θ 2 + θ 3 + … + θ 5 2 = 1 5 °