Functional Complex Trignometry

Geometry Level 5

The polynomial f ( x ) = x 52 + a 1 x 51 + a 2 x 50 + + a 51 x + a 52 f(x) = x^{52} + a_1x^{51} + a_2x^{50} + \cdots + a_{51}x+a_{52} has roots tan θ 1 , tan θ 2 , tan θ 3 , , tan θ 52 . \tan\theta_1, \tan\theta_2, \tan\theta_3, \ldots, \tan\theta_{52}.

We are also told that:

  • f ( i ) = i ( 2 + 3 ) + 1 f(-i) = i(2 + \sqrt3) + 1 ,
  • f ( 1 ) = i 3 + 1 f(-1) = i\sqrt3 + 1 ,
  • f ( i ) = i ( 2 + 3 ) 1 f(i) = i(2 + \sqrt3) - 1 ,
  • f ( 1 ) = i 3 1 f(1) = i\sqrt3 - 1 , and
  • f ( 0 ) = 1 f(0) = 1 .

Find the minimum positive value of θ 1 + θ 2 + θ 3 + + θ 52 . \theta_1 + \theta_2 +\theta_3 + \cdots +\theta_{52}.


All of my problems are original .
0 ° 0\degree 15 ° 15\degree 30 ° 30\degree 45 ° 45\degree 60 ° 60\degree 75 ° 75\degree 90 ° 90\degree None of the options above is correct

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aryan Sanghi
Oct 18, 2020

For angles θ 1 , θ 2 , θ 3 , , θ 52 \theta_1, \theta_2, \theta_3, \ldots, \theta_{52} , tangent of their sum is

tan ( θ 1 + θ 2 + θ 3 + + θ 52 ) = S 1 S 3 + S 5 S 7 + S 49 + S 51 1 S 2 + S 4 S 6 + S 8 + S 50 + S 52 \tan(\theta_1 + \theta_2 +\theta_3 + \ldots +\theta_{52}) = \frac{S_1 - S_3 + S_5 - S_7 + \ldots -S_{49} + S_{51}}{1 - S_2 + S_4 - S_6 + S_8 + \ldots -S_{50} + S_{52}}

where S n S_n is the sum of tangents of angles taking n n at a time. Let's reduce our function to the above equation.


Putting x = i x = i in f ( x ) f(x) .

f ( i ) = ( i ) 52 + a 1 ( i ) 51 + a 2 ( i ) 50 + + a 51 i + a 52 f(i) = (i)^{52} + a_1(i)^{51} + a_2(i)^{50} + \ldots + a_{51}i + a_{52} f ( i ) = 1 a 1 i a 2 + a 3 i + + a 51 i + a 52 \boxed{f(i) = 1 - a_1i - a_2 + a_3i + \ldots + a_{51}i +a_{52}}

Putting x = i x = -i in f ( x ) f(x) .

f ( i ) = ( i ) 52 + a 1 ( i ) 51 + a 2 ( i ) 50 + + a 51 ( i ) + a 52 f(-i) = (-i)^{52} + a_1(-i)^{51} + a_2(-i)^{50} + \ldots + a_{51}(-i) + a_{52} f ( i ) = 1 + a 1 i a 2 a 3 i + a 51 i + a 52 \boxed{f(-i) = 1 + a_1i - a_2 - a_3i + \ldots - a_{51}i +a_{52}}

Subtracting f ( i ) f(i) from f ( i ) f(-i)

f ( i ) f ( i ) = 2 a 1 i 2 a 3 i + 2 a 5 i 2 a 7 i + 2 a 51 i f(-i) - f(i) = 2a_1i - 2a_3i + 2a_5i - 2a_7i + \ldots - 2a_{51}i f ( i ) f ( i ) 2 i = a 1 a 3 + a 5 a 7 + a 51 ( 1 ) \frac{f(-i) - f(i)}{2i} = a_1 - a_3 + a_5 - a_7 + \ldots - a_{51} \ldots \ldots (1)

Adding f ( i ) f(i) and f ( i ) f(-i)

f ( i ) + f ( i ) = 2 2 a 2 + 2 a 4 2 a 6 + 2 a 50 + 2 a 52 f(-i) + f(i) = 2 - 2a_2 + 2a_4 - 2a_6 + \ldots - 2a_{50} + 2a_{52} f ( i ) + f ( i ) 2 = 1 a 2 + a 4 a 6 + a 50 + a 52 ( 2 ) \frac{f(-i) + f(i)}{2} = 1 - a_2 + a_4 - a_6 + \ldots - a_{50} + a_{52} \ldots \ldots (2)

Dividing ( 2 ) (2) from ( 1 ) (1)

1 i f ( i ) f ( i ) f ( i ) + f ( i ) = a 1 a 3 + a 5 a 7 + a 51 1 a 2 + a 4 a 6 + a 50 + a 52 \frac{1}{i} \frac{f(-i) - f(i)}{f(-i) + f(i)} = \frac{a_1 - a_3 + a_5 - a_7 + \ldots - a_{51}}{1 - a_2 + a_4 - a_6 + \ldots - a_{50} + a_{52}}

Now, for a polynomial, a 2 n + 1 = S 2 n + 1 a_{2n + 1} = -S_{2n+1} and a 2 n = S 2 n a_{2n} = S_{2n} for each natural n n . Putting it

1 i f ( i ) f ( i ) f ( i ) + f ( i ) = S 1 S 3 + S 5 S 7 + S 51 1 S 2 + S 4 S 6 + S 50 + S 52 \frac{1}{i} \frac{f(-i) - f(i)}{f(-i) + f(i)} = -\frac{S_1 - S_3 + S_5 - S_7 + \ldots - S_{51}}{1 - S_2 + S_4 - S_6 + \ldots - S_{50} + S_{52}}

i f ( i ) f ( i ) f ( i ) + f ( i ) = S 1 S 3 + S 5 S 7 + S 51 1 S 2 + S 4 S 6 + S 50 + S 52 i\frac{f(-i) - f(i)}{f(-i) + f(i)} = \frac{S_1 - S_3 + S_5 - S_7 + \ldots - S_{51}}{1 - S_2 + S_4 - S_6 + \ldots - S_{50} + S_{52}}

As roots of f ( x ) f(x) are tan θ 1 , tan θ 2 , tan θ 3 , , tan θ 52 \tan\theta_1, \tan\theta_2, \tan\theta_3, \ldots, \tan\theta_{52} , So

tan ( θ 1 + θ 2 + θ 3 + + θ 52 ) = i f ( i ) f ( i ) f ( i ) + f ( i ) \boxed{\tan(\theta_1 + \theta_2 +\theta_3 + \ldots +\theta_{52}) = i\frac{f(-i) - f(i)}{f(-i) + f(i)}}

Putting values of f ( i ) = i ( 2 + 3 ) + 1 f(-i) = i(2 + \sqrt3) + 1 and f ( i ) = i ( 2 + 3 ) 1 f(i) = i(2 + \sqrt3) - 1

tan ( θ 1 + θ 2 + θ 3 + + θ 52 ) = i ( i ( 2 + 3 ) + 1 ) ( i ( 2 + 3 ) 1 ) ( i ( 2 + 3 ) + 1 ) + ( i ( 2 + 3 ) 1 ) \tan(\theta_1 + \theta_2 +\theta_3 + \ldots +\theta_{52}) = i\frac{(i(2 + \sqrt3) + 1) - (i(2 + \sqrt3) - 1)}{(i(2 + \sqrt3) + 1) + (i(2 + \sqrt3) - 1)}

tan ( θ 1 + θ 2 + θ 3 + + θ 52 ) = 2 3 \tan(\theta_1 + \theta_2 +\theta_3 + \ldots +\theta_{52}) = 2 - \sqrt3

θ 1 + θ 2 + θ 3 + + θ 52 = 15 ° \color{#3D99F6}{\boxed{\theta_1 + \theta_2 +\theta_3 + \ldots +\theta_{52} = 15\degree}}

@Aryan Sanghi You always makes such a good problems and post such a excellent question. Thanks for this one.
I can't solve this correctly but have understand the solution.

Talulah Riley - 7 months, 3 weeks ago

Log in to reply

Thanku u very much for your appreciation. Your appreciation is what motivates me to make more questions. :)

Aryan Sanghi - 7 months, 3 weeks ago

I have tried similar approach by looking for tangents sum for two and four angles and tried to generalize,but i messed it up and got 30 as answer. :-(

A Former Brilliant Member - 7 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...