Functional Equation 2

Algebra Level 5

If f ( x ) + f ( x 1 x ) = 1 + x f(x)+f\left(\dfrac{x-1}{x} \right)=1+x , find f ( 300 ) f(300) rounded to the nearest tenth.


The answer is 150.0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Alan Yan
Sep 3, 2015

Substitute x = x 1 x f ( x 1 x ) + f ( 1 1 x ) = 2 x 1 x x = \frac{x-1}{x} \implies f(\frac{x-1}{x}) + f(\frac{1}{1-x}) = \frac{2x-1}{x} Call this A.

Now substitute x = x 1 x x = \frac{x-1}{x} into A to get f ( x ) + f ( x 1 x ) = x 2 x 1 f(x) + f(\frac{x-1}{x}) = \frac{x-2}{x-1} and call this B.

Add the original identity and B and subtract A to get

f ( x ) = x 3 x 2 + 1 2 x ( x 1 ) f(x) = \frac{x^3-x^2+1}{2x(x-1)}

Now calculating f ( 300 ) f(300) and rounding yields the answer of 150.5 \boxed{150.5}

Nice solution :) I tried the first bit but then I didn't repeat it

Curtis Clement - 5 years, 9 months ago

I make the number to be:

1
2
>>> 1.*(300**3-300**2+1)/(2*300*(300-1))
150.000005574136 

Bill Bell - 5 years, 8 months ago

Itdoesmt even work

Sid Patak - 3 years, 11 months ago
Chew-Seong Cheong
Sep 27, 2018

\(\begin{array} {} f(x) + f\left(\dfrac {x-1}x\right) = 1 + x & ...(1) & \small \color{blue} \text{Replace }x \text{ with }\dfrac {x-1}x. \\ f\left(\dfrac {x-1}x\right) + f\left(\dfrac 1{1-x}\right) = 2 - \dfrac 1x & ...(2) & \small \color{blue} \text{Replace }x \text{ with }\dfrac 1{1-x}. \\ f\left(\dfrac 1{1-x}\right) + f(x) = 1 + \dfrac 1{1-x} & ...(3) \end{array} \)

( 1 ) ( 2 ) + ( 3 ) : 2 f ( x ) = 1 + x 2 + 1 x + 1 + 1 1 x f ( x ) = 1 2 ( x + 1 x + 1 1 x ) f ( 300 ) = 1 2 ( 300 + 1 300 1 299 ) 150.0 \begin{aligned} (1)-(2)+(3): 2f(x) & = 1 + x - 2 + \frac 1x + 1 + \frac 1{1-x} \\ \implies f(x) & = \frac 12 \left(x + \frac 1x + \frac 1{1-x}\right) \\ f(300) & = \frac 12 \left(300 + \frac 1{300} - \frac 1{299}\right) \\ & \approx \boxed{150.0} \end{aligned}

Bill Bell
Oct 16, 2015

Alternative solution:

Substitute some values for x x for reasons I couldn't possibly justify other than they seemed likely to produce a useful result. Incidentally I used the Python sympy symbolic algebra module.

1
2
3
4
5
6
7
>>> ex=Eq(f(x)+f((x-1)/x),1+x)
>>> ex.subs(x,300)
f(299/300) + f(300) == 301
>>> ex.subs(x,Rational(299,300))
f(-1/299) + f(299/300) == 599/300
>>> ex.subs(x,Rational(-1,299))
f(-1/299) + f(300) == 298/299

Then solve for the unknown function value.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...