Functional Equation

Calculus Level 5

Given a function f : R R f :\mathbb{R} \rightarrow \mathbb{R} such that

f ( x ) = 2014 x + 0 x 201 4 t f ( x t ) d t , f(x)=2014x+\int_{0}^{x} 2014^t f(x-t) \ dt,

find the value of f ( 1 2 ) . f \left(\dfrac{1}{2}\right).


The answer is 2873.98.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

f ( x ) = 2014 x + 0 x 2014 t f ( x t ) . d t f ( x ) 2014 x = 0 x 2014 t f ( x t ) . d t f ( x ) 2014 x = 2014 x 0 x f ( t ) 2014 t . d t . . . . . . ( 1 ) f ( x ) 2014 = l n ( 2014 ) [ f ( x ) 2014 x ] + f ( x ) L e t f ( x ) = y : d y d x ( l n ( 2014 ) + 1 ) y = 2014 ( 2014 l n ( 2014 ) ) x S o l v i n g t h i s d i f f e r e n t i a l e q u a t i o n a n d p l u g i n g x = 1 2 f\left( x \right) \quad =\quad 2014x\quad +\quad \int _{ 0 }^{ x }{ { 2014 }^{ t } } f\left( x-t \right) .dt\\ f\left( x \right) \quad -\quad 2014x\quad =\quad \int _{ 0 }^{ x }{ { 2014 }^{ t } } f\left( x-t \right) .dt\\ f\left( x \right) \quad -\quad 2014x\quad =\quad { 2014 }^{ x }\int _{ 0 }^{ x }{ \frac { f\left( t \right) }{ { 2014 }^{ t } } } .dt\quad ......(1)\\ f'\left( x \right) \quad -\quad 2014\quad =\quad ln(2014)[f\left( x \right) -2014x]\quad +\quad f\left( x \right) \\ \\ Let\quad f\left( x \right) =y\quad :\\ \\ \frac { dy }{ dx } \quad -(ln(2014)+1)y\quad =\quad 2014\quad -\quad (2014ln(2014))x\\ \\ Solving\quad this\quad differential\quad equation\quad and\quad pluging\quad x\quad =\quad \frac { 1 }{ 2 }

f ( 1 2 ) = 2873.9 \boxed{\quad f\left( \frac { 1 }{ 2 } \right) =2873.9}

f ( x ) = 2014 x + 0 x 2014 t f ( x t ) d t f ( x ) 2014 x = 0 x 2014 t f ( x t ) d t f ( x ) 2014 x = 2014 x 0 x f ( t ) 2014 t d t f ( 0 ) = 0 f ( x ) 2014 = l n ( 2014 ) [ f ( x ) 2014 x ] + f ( x ) u s i n g a = 2014 a n d b = l n ( a ) + 1 = l n ( a e ) a n d b l n ( a ) = 1 f ( x ) = l n ( a e ) f ( x ) + a a l n ( a ) x f ( x ) = b f ( x ) + a a l n ( a ) f\left( x \right) \quad =\quad 2014x\quad +\quad \int _{ 0 }^{ x }{ { 2014 }^{ t } } f\left( x-t \right) dt\\ f\left( x \right) \quad -\quad 2014x\quad =\quad \int _{ 0 }^{ x }{ { 2014 }^{ t } } f\left( x-t \right) dt\\ f\left( x \right) \quad -\quad 2014x\quad =\quad { 2014 }^{ x }\int _{ 0 }^{ x }{ \frac { f\left( t \right) }{ { 2014 }^{ t } } } dt\\ f\left( 0 \right) =0\quad \\ f'\left( x \right) \quad -\quad 2014\quad =\quad ln(2014)[f\left( x \right) -2014x]\quad +\quad f\left( x \right) \\ using\quad \\ a=2014\quad and\quad b=ln\left( a \right) +1=ln\left( ae \right) \quad and\quad b-ln\left( a \right) =1\\ f'\left( x \right) =\quad ln\left( ae \right) f\left( x \right) +a-aln\left( a \right) x\\ f'\left( x \right) =\quad bf\left( x \right) +a-aln\left( a \right)

Taking Laplace transformation

s F ( s ) = b F ( s ) + a s a l n ( a ) s 2 F ( s ) = a { s l n ( a ) s 2 ( s b ) } F ( s ) = a { ( b l n a ) b 2 [ 1 s b 1 s ] + l n ( a ) b s 2 } sF\left( s \right) =bF\left( s \right) +\frac { a }{ s } -\frac { aln\left( a \right) }{ { s }^{ 2 } } \\ F\left( s \right) =a\left\{ \frac { s-ln\left( a \right) }{ { s }^{ 2 }\left( s-b \right) } \right\} \\ F\left( s \right) =a\left\{ \frac { \left( b-lna \right) }{ { b }^{ 2 } } \left[ \frac { 1 }{ s-b } -\frac { 1 }{ s } \right] +\frac { ln\left( a \right) }{ b{ s }^{ 2 } } \right\}

Taking Inverse Laplace transformation

f ( x ) = a { ( b l n a ) b 2 [ e b x 1 ] + l n ( a ) b x } f ( 1 2 ) = a { ( b l n a ) b 2 [ e 0.5 b 1 ] + l n ( a ) 2 b } f ( 0.5 ) = 2014 { 1 [ l n ( 2014 e ) ] 2 [ e 0.5 l n ( 2014 e ) 1 ] + l n ( 2014 ) 2 l n ( 2014 e ) } f ( 0.5 ) = 2014 { [ 2014 e 1 ] [ l n ( 2014 e ) ] 2 + l n ( 2014 ) 2 l n ( 2014 e ) } f ( 0.5 ) = 2873.98 f\left( x \right) =a\left\{ \frac { \left( b-lna \right) }{ { b }^{ 2 } } \left[ { e }^{ bx }-1 \right] +\frac { ln\left( a \right) }{ b } x \right\} \\ f\left( \frac { 1 }{ 2 } \right) =a\left\{ \frac { \left( b-lna \right) }{ { b }^{ 2 } } \left[ { e }^{ 0.5b }-1 \right] +\frac { ln\left( a \right) }{ 2b } \right\} \\ f\left( 0.5 \right) =2014\left\{ \frac { 1 }{ { \left[ ln\left( 2014e \right) \right] }^{ 2 } } \left[ { e }^{ 0.5ln\left( 2014e \right) }-1 \right] +\frac { ln\left( 2014 \right) }{ 2ln\left( 2014e \right) } \right\} \\ \\ f\left( 0.5 \right) =2014\left\{ \frac { \left[ \sqrt { 2014e } -1 \right] }{ { \left[ ln\left( 2014e \right) \right] }^{ 2 } } +\frac { ln\left( 2014 \right) }{ 2ln\left( 2014e \right) } \right\} \\ \\ f\left( 0.5 \right) =2873.98

Rishabh Deep Singh - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...