Functional Equation!

Algebra Level 5

f ( x + y x ) = f ( x ) + f ( y ) f ( x ) + 2 y \large{f \left( x + \dfrac{y}{x} \right ) = f(x) + \dfrac{f(y)}{f(x)} + 2y}

Let f ( x ) : Q + R f(x): \mathbb{Q}^+ \rightarrow \mathbb{R} be a function such that it satisfies the above functional equation for every x , y x,y belonging to the set of positive rational numbers. Then find the value of f ( 2015 ) f(2015) .


The answer is 4060225.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Jul 28, 2015

It is given that f ( x + y x ) = f ( x ) + f ( y ) f ( x ) + 2 y \begin{aligned} f \left(x+\frac{y}{x}\right) & = f(x) + \frac{f(y)}{f(x)} + 2y \end{aligned}

y = x f ( x + 1 ) = f ( x ) + 1 + 2 x . . . ( 1 ) f ( x + 2 ) = f ( x + 1 ) + 1 + 2 ( x + 1 ) = f ( x ) + 4 x + 4 . . . ( 2 ) y = 2 x f ( x + 2 ) = f ( x ) + f ( 2 x ) f ( x ) + 4 x . . . ( 3 ) ( 3 ) ( 2 ) : 0 = f ( 2 x ) f ( x ) 4 f ( 2 x ) = 4 f ( x ) . . . ( 4 ) ( 4 ) : x = 1 : f ( 2 ) = 4 f ( 1 ) . . . ( 4 a ) ( 1 ) : x = 1 : f ( 2 ) = f ( 1 ) + 3 . . . ( 1 a ) ( 4 a ) = ( 1 a ) : 4 f ( 1 ) = f ( 1 ) + 3 f ( 1 ) = 1 \begin{array} {lrll} y = x & \Rightarrow f(x+1) & = f(x) + 1 + 2x & ...(1) \\ & \Rightarrow f(x+2) & = f(x+1) + 1 + 2(x+1) \\ & & = f(x) + 4x + 4 & ...(2) \\ y = 2x & \Rightarrow f(x+2) & = f(x) + \dfrac{f(2x)}{f(x)} + 4x & ...(3) \\ (3) - (2): & 0 & = \dfrac{f(2x)}{f(x)} - 4 \\ & \Rightarrow f(2x) & = 4f(x) & ... (4) \\ (4): x = 1: & f(2) & = 4f(1) &...(4a) \\ (1): x=1: & f(2) & = f(1) + 3 & ...(1a) \\ (4a)=(1a): & 4f(1) & = f(1) + 3 \\ & f(1) & = 1 \end{array}

From ( 1 ) (1) we have:

f ( x + 1 ) = f ( x ) + 2 x + 1 x = 1 n f ( x + 1 ) = x = 1 n ( f ( x ) + 2 x + 1 ) = x = 1 n f ( x ) + n ( n + 1 ) + n x = 1 n f ( x + 1 ) x = 1 n f ( x ) = n 2 + 2 n x = 1 n + 1 f ( x ) f ( 1 ) x = 1 n f ( x ) = n 2 + 2 n x = 1 n + 1 f ( x ) x = 1 n f ( x ) = n 2 + 2 n + f ( 1 ) f ( n + 1 ) = n 2 + 2 n + 1 = ( n + 1 ) 2 f ( n ) = n 2 f ( 2015 ) = 201 5 2 = 4060225 \begin{aligned} f(x+1) & = f(x) + 2x + 1 \\ \Rightarrow \sum_{x=1}^n f(x+1) & = \sum_{x=1}^n (f(x) + 2x + 1) \\ & = \sum_{x=1}^n f(x) + n(n+1) + n \\ \sum_{x=1}^n f(x+1) - \sum_{x=1}^n f(x) & = n^2 + 2n \\ \sum_{x=1}^{n+1} f(x) - f(1) - \sum_{x=1}^n f(x) & = n^2 + 2n \\ \sum_{x=1}^{n+1} f(x) - \sum_{x=1}^n f(x) & = n^2 + 2n + f(1) \\ f(n+1) & = n^2 + 2n + 1 = (n+1)^2 \\ \Rightarrow f(n) & = n^2 \\ \Rightarrow f(2015) & = 2015^2 = \boxed{4060225} \end{aligned}

Moderator note:

This approach shows that on the integers, we have f ( n ) = n 2 f(n) = n^2 . How can we extend this function to the rationals? Can it be extended to the irrationals in another way?

Awesome question sir... but instead of taking {Case 1: y=x and Case 2: y=2x} if we take {Case 1:x=y=k(some integer) and Case 2:x=k and y=0} the solution becomes lot simpler.

by using little logical thing we will easily get f(k)=k^2

Priyanshu Tirkey - 5 years, 4 months ago
Raushan Sharma
Feb 24, 2016

We are given f ( x + y x ) = f ( x ) + f ( y ) f ( x ) + 2 y \begin{aligned} f \left(x+\frac{y}{x}\right) & = f(x) + \frac{f(y)}{f(x)} + 2y \end{aligned}

Now, plug x = y x=y , we get:

f ( x + 1 ) = f ( x ) + 1 + 2 x f(x+1) = f(x) + 1 + 2x

Now, add x 2 x^2 to both the sides

f ( x + 1 ) + x 2 = f ( x ) + 1 + 2 x + x 2 f(x+1) + x^2 = f(x) + 1 + 2x + x^2

f ( x + 1 ) + x 2 = f ( x ) + ( x + 1 ) 2 \Rightarrow f(x+1) + x^2 = f(x) + (x+1)^2

f ( x + 1 ) ( x + 1 ) 2 = f ( x ) x 2 \Rightarrow f(x+1) - (x+1)^2 = f(x) - x^2

Now, define g ( x ) = f ( x ) x 2 g(x) = f(x) - x^2

So, we get :

g ( x + 1 ) = g ( x ) g(x+1) = g(x) g \Rightarrow g i s is a a c o n s t a n t constant f u n c t i o n function

So, let g ( x ) = c g(x) = c

f ( x ) = x 2 + c \Rightarrow f(x) = x^2 + c

Plugging f ( x ) = x 2 + c f(x) = x^2 + c in the parent equation, we get :

x 2 + y 2 x 2 + 2 y + c = x 2 + c + y 2 + c x 2 + c + 2 y x^2 + \frac{y^2}{x^2} + 2y + c = x^2 + c + \frac{y^2 + c}{x^2 + c} + 2y

y 2 x 2 = y 2 + c x 2 + c \Rightarrow \frac{y^2}{x^2} = \frac{y^2 + c}{x^2 + c}

c x 2 = c y 2 \Rightarrow cx^2 = cy^2

c = 0 \Rightarrow c = 0

Hence, f ( x ) = x 2 f(x) = x^2

So, f ( 2015 ) = 201 5 2 = 4060225 f(2015) = 2015^2 = \boxed{4060225}

Barr Shiv
Dec 10, 2018

plug in x=y then get: f(x+1)=f(x)+1+2x f(x+1)-f(x)=2x+1 let n be an integer: f(n+1)-f(n)=2x+1 we know from arithmetic series that if a(n+1)-a(n)=an+b that means that a(n) can be a sum of an arithmetic series therefore is a quadradic function with no "c". one can solve the equation by defining f(n)= an^2+bn. after that one gets that f(n)=n^2 and therefore f(2015)=2015^2

Aakash Khandelwal
Apr 20, 2016

Putting y = x = n y=x=n

We have following recurrence

f ( n + 1 ) f ( n ) = 2 n + 1 f(n+1) - f(n) =2n+1 .

Now taking summation as n varies from 1 to 2014

f ( 2015 ) = f ( 1 ) + 2014 × 2016 f(2015)=f(1) + 2014\times 2016 .

Put y = 2 x y=2x in first equation and use the recurrence relation to get

f ( 2 x ) = 4 f ( x ) f(2x)=4 f(x) .

f ( 2 ) = 4 f ( 1 ) f(2)=4f(1) .

Now using recurrence relation f ( 2 ) = f ( 1 ) + 3 f(2)=f(1)+3 .

Therefore f ( 1 ) f(1) = 1.

Hence the conclusion follows

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...