Functional Equation again

Algebra Level 3

Find all continuous functions f : R R f:\mathbb{R} \rightarrow \mathbb{R} such that f ( f ( x + y ) ) = f ( x ) + f ( y ) f(f(x+y))=f(x)+f(y) and f ( x ) 0 f(x)\ne 0 and f ( 1010 ) = 1011 f(1010)=1011 . In particular, what is f ( 2020 ) ? f(2020)?

2021 2021 2019 2019 0 2020 2020

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

ChengYiin Ong
Jul 11, 2020

We claim that the only solution is f ( x ) = x + 1 f(x)=x+1 . Let P ( x , y ) P(x,y) be the assertion, using P ( x + y , 0 ) P(x+y,0) and P ( x , y ) P(x,y) , we can easily get f ( x + y ) + f ( 0 ) = f ( x ) + f ( y ) f(x+y)+f(0)=f(x)+f(y) and then let g ( x ) = f ( x ) f ( 0 ) g(x)=f(x)-f(0) , g ( x + y ) = g ( x ) + g ( y ) g(x+y)=g(x)+g(y) since f f is continuous, g g is also continuous and thus g g is linear. Thus, f ( x ) = k x + c f(x)=kx+c where k , c R k,c \in \mathbb{R} . Then we can find that when k = 1 k=1 , since f ( 1010 ) = 1011 f(1010)=1011 , we must have c = 1 c=1 . So, the only solution is f ( x ) = x + 1 x R . f(x)=x+1 \ \forall x \in \mathbb{R}. Hence, f ( 2020 ) = 2021. f(2020)=2021.

Let P ( x , y ) P(x,y) be the statement f ( f ( x + y ) ) = f ( x ) + f ( y ) ( 1 ) f\left( {f\left( {x + y} \right)} \right) = f\left( x \right) + f\left( y \right){\text{ }}\left( 1 \right) .
Moreover, let f ( 0 ) = c f\left( 0 \right) = c . P ( x + y , 0 ) f ( f ( x + y ) ) = f ( x + y ) + c ( 2 ) P\left( {x + y,\;0} \right) \Rightarrow f\left( {f\left( {x + y} \right)} \right) = f\left( {x + y} \right) + c{\text{ }}\left( 2 \right)

( 1 ) , ( 2 ) f ( x + y ) + c = f ( x ) + f ( y ) ( 3 ) \left( 1 \right),\left( 2 \right) \Rightarrow f\left( {x + y} \right) + c = f\left( x \right) + f\left( y \right){\text{ }}\left( 3 \right)

Let g ( x ) = f ( x ) c g\left( x \right) = f\left( x \right) - c , x R x \in \mathbb{R} .
Then, ( 3 ) f ( x + y ) c = ( f ( x ) c ) + ( f ( y ) c ) \left( 3 \right) \Rightarrow f\left( {x + y} \right) - c{\text{ = }}\left( {f\left( x \right) - c} \right) + \left( {f\left( y \right) - c} \right) g ( x + y ) = g ( x ) + g ( y ) . \Rightarrow g\left( {x + y} \right){\text{ = }}g\left( x \right) + g\left( y \right). Thus, g g satisfies Cauchy’s functional equation . Since f f is continuous, the same holds for g g . It is well known that any continuous solution to Cauchy’s equation is of the form g ( x ) = k x g\left( x \right) = kx , for some k R k \in \mathbb{R} .

This implies that f ( x ) = k x + c , x R f\left( x \right) = kx + c,{\text{ }}x \in \mathbb{R} .

Now,
P ( x , 0 ) f ( f ( x ) ) = f ( x ) + c k f ( x ) + c = k x + 2 c k ( k x + c ) + c = k x + 2 c k 2 x + k c = k x + c \begin{gathered} P\left( {x,\;0} \right) \Rightarrow f\left( {f\left( x \right)} \right) = f\left( x \right) + c \\ \Rightarrow k \cdot f\left( x \right) + c = kx + 2c \\ \Rightarrow k \cdot \left( {kx + c} \right) + c = kx + 2c \\ \Rightarrow {k^2}x + kc = kx + c \\ \end{gathered}

{ k 2 = k k c = c ( { k = 0 c = 0 o r { k = 1 c R ) \Rightarrow \left\{ \begin{matrix} {{k}^{2}}=k \\ kc=c \\ \end{matrix} \right.\Rightarrow \left( \left\{ \begin{matrix} k=0 \\ c=0 \\ \end{matrix}\text{ }or \right.\text{ }\left\{ \begin{matrix} k=1 \\ c\in \mathbb{R} \\ \end{matrix} \right. \right)

Since f f is not the zero function, the first option is rejected. Hence, f ( x ) = x + c , x R f\left( x \right) = x + c,{\text{ }}x \in \mathbb{R} .
Plugging x = 1010 x = 1010 , we get f ( 1010 ) = 1010 + c 1011 = 1010 + c c = 1 f\left( {1010} \right) = 1010 + c \Rightarrow 1011 = 1010 + c \Rightarrow c = 1 .

We can easily verify that f ( x ) = x + 1 f\left( x \right) = x + 1 satisfies all given conditions.
Thus, this is the unique solution to the problem.

For the answer, f ( 2020 ) = 2021 f\left( {2020} \right) = \boxed{2021} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...