Functional equations game

Calculus Level 3

Two functions f f and g g , defined on ( , ) (-\infty,\infty) and differentiable at least up to order 2, satisfy f ( x + y ) + f ( x y ) = 2 f ( x ) g ( y ) f(x+y) + f(x-y)=2f(x)g(y) and g ( 0 ) = 1 g''(0)=1 .

Find ln ( g ( 2019 ) ) \lfloor{\ln(g(2019))}\rfloor .

Notation: \lfloor \cdot \rfloor denotes the floor function .


The answer is 2018.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Feb 18, 2019

\(\begin{array} {} P(x,y): & f(x+y) + f(x-y) = 2f(x) g(y) & ...(0) \\ P(0,x): & f(x) + f(-x) = 2f(0) g(x) & ...(1) \\ P(0,-x): & f(-x) + f(x) = 2f(0) g(-x) & ...(2) \end{array} \)

From ( 1 ) (1) and ( 2 ) (2) , we note that g ( x ) = g ( x ) g(x) = g(-x) . This means that g ( x ) g(x) is even.

\(\begin{array} {} P(x,x): & f(2x) + f(0) = 2f(x) g(x) & ...(3) \\ P(-x,-x): & f(-2x) + f(0) = 2f(-x) \color{blue} g(x) & ...(4) & \small \color{blue} \text{Since }g(x) = g(-x) \end{array} \)

Then ( 3 ) + ( 4 ) : (3)+(4):

f ( 2 x ) + f ( 2 x ) + 2 f ( 0 ) = 2 g ( x ) ( f ( x ) + f ( x ) ) ( 1 ) : f ( x ) + f ( x ) = 2 f ( 0 ) g ( x ) 2 f ( 0 ) g ( 2 x ) + 2 f ( 0 ) = 2 g ( x ) 2 f ( 0 ) g ( x ) g ( 2 x ) + 1 = 2 ( g ( x ) ) 2 g ( 2 x ) = 2 ( g ( x ) ) 2 1 . . . ( 5 ) \begin{aligned} {\color{#3D99F6}f(2x) + f(-2x)} + 2f(0) & = 2g(x) ({\color{#3D99F6} f(x) + f(-x)}) & \small \color{#3D99F6} (1): \ f(x) + f(-x) = 2f(0) g(x) \\ {\color{#3D99F6}2f(0)g(2x)} + 2f(0) & = 2g(x) \cdot \color{#3D99F6}2f(0)g(x) \\ g(2x) + 1 & = 2(g(x))^2 \\ \implies g(2x) & = 2(g(x))^2 - 1 \quad ...(5) \end{aligned}

It would appear that g ( x ) = cos x g(x) = \cos x , so that cos ( 2 x ) = 2 cos 2 x 1 \cos (2x) = 2\cos^2 x - 1 . But g ( x ) = cos x g''(x) = - \cos x and g ( 0 ) = 1 1 g''(0) = -1 \ne 1 . Therefore g ( x ) cos x g(x) \ne \cos x .

Instead, it is g ( x ) = cosh x = e x + e x 2 g(x) = \cosh x = \dfrac {e^x + e^{-x}}2 . Then 2 ( g ( x ) ) 2 1 = 2 ( e x + e x 2 ) 2 1 = e 2 x + e 2 x 2 = g ( 2 x ) 2(g(x))^2 - 1 = 2\left(\dfrac {e^x+e^{-x}}2\right)^2 - 1 = \dfrac {e^{2x}+e^{-2x}}2 = g(2x) ; and g ( x ) = cosh x g''(x) = \cosh x , g ( 0 ) = 1 \implies g''(0) = 1 . And f ( x ) = e x f(x) = e^x . Then P ( x , y ) = f ( x + y ) + f ( x y ) = e x + y + e x y = 2 e x ( e y + e y 2 ) = 2 f ( x ) g ( y ) P(x,y) = f(x+y) + f(x-y) = e^{x+y} + e^{x-y} = 2e^x \left(\dfrac {e^y+e^{-y}}2 \right) = 2f(x) g(y) , proving f ( x ) = e x f(x) = e^x and g ( x ) = cosh x g(x) = \cosh x satisfy the functional equation.

Therefore, ln ( g ( 2019 ) ) = ln ( cosh 2019 ) = 2018 \lfloor \ln (g(2019)) \rfloor = \lfloor \ln (\cosh 2019) \rfloor = \boxed {2018} .

Camila Dominguez
Feb 16, 2019

First, let's differentiate twice with respect to y y . We obtain: f ( x + y ) + f ( x y ) = 2 f ( x ) g ( y ) f''(x+y) + f''(x-y) =2 f(x)g''(y)

By making y = 0 y = 0 and g ( 0 ) = 1 g''(0)=1 , we obtain the differential equation f ( x ) + f ( x ) = 2 f ( x ) f''(x)+f''(x)=2f(x) or f ( x ) f ( x ) = 0 f''(x)-f(x) = 0 , with solutions of f ( x ) = C 1 e x + C 2 e x f(x) = C_1e^x + C_2e^{-x} (1).

Substituting (1) into the original equation gives us: C 1 e x + y + C 2 e ( x + y ) + C 1 e x y + C 2 e ( x y ) = 2 ( C 1 e x + c 2 e x ) g ( y ) C_1e^{x+y} + C_2e^{-(x+y)} + C_1e^{x-y} + C_2e^{-(x-y)} = 2(C_1e^x + c_2e^{-x})g(y)

Using direct calculations, we obtain 1 2 ( e y + e y ) = g ( y ) \frac{1}{2}(e^y + e^{-y} ) = g(y) or g ( y ) = c o s h ( y ) g(y) = cosh(y) .

Finally, we evaluate the function at 2019 2019 and find ln ( g ( 2019 ) ) \lfloor\ln(g(2019))\rfloor .

We obtain that ln ( g ( 2019 ) ) = 2018 \lfloor\ln(g(2019))\rfloor = 2018 .

Tom Engelsman
Feb 16, 2019

Let us first differentiate the original functional equation twice with respect to y y :

f ( x + y ) + f ( x y ) = 2 f ( x ) g ( y ) g ( y ) = f ( x + y ) + f ( x y ) 2 f ( x ) f''(x+y) + f''(x-y) = 2f(x)g''(y) \Rightarrow g''(y) = \frac{f''(x+y)+f''(x-y)}{2f(x)} (i)

and if g ( 0 ) = 1 g''(0) = 1 , then we have:

1 = f ( x ) + f ( x ) 2 f ( x ) f ( x ) f ( x ) = 0 f ( x ) = A e x + B e x 1 = \frac{f''(x) + f''(x)}{2f(x)} \Rightarrow f''(x) - f(x) = 0 \Rightarrow f(x) = Ae^{x} + Be^{-x} (ii)

Substituting (ii) back into the original functional equation now gives:

A e x + y + B e ( x + y ) + A e x y + B e ( x y ) = 2 ( A e x + B e x ) g ( y ) Ae^{x+y} + Be^{-(x+y)} + Ae^{x-y} +Be^{-(x-y)} = 2(Ae^{x} + Be^{-x}) \cdot g(y) ;

or A e x ( e y + e y ) + B e x ( e y + e y ) = ( A e x + B e x ) 2 g ( y ) ; Ae^{x}(e^{y} + e^{-y}) + Be^{-x}(e^{y} +e^{-y}) = (Ae^{x} + Be^{-x}) \cdot 2g(y);

or ( A e x + B x ) ( e y + e y ) = ( A e x + B e x ) 2 g ( y ) (Ae^{x} + B^{-x})(e^{y} + e^{-y}) = (Ae^{x} + Be^{-x}) \cdot 2g(y) ;

or e y + e y = 2 g ( y ) e^{y} + e^{-y} = 2g(y) ;

or g ( y ) = e y + e y 2 = c o s h ( y ) . g(y) = \frac{e^{y} + e^{-y}}{2} = cosh(y).

Finally, l n ( g ( 2019 ) ) = l n ( e 2019 + e 2019 2 ) ; \lfloor ln(g(2019)) \rfloor = \lfloor ln(\frac{e^{2019} + e^{-2019}}{2}) \rfloor; ;

or l n ( e 2019 ( 1 + e 4038 ) 2 ) \lfloor ln(\frac{e^{2019}(1 + e^{-4038})}{2}) \rfloor ;

or l n ( e 2019 ) + l n ( 1 + e 4038 ) l n ( 2 ) 2019 l n ( 2 ) = 2018 . \lfloor ln(e^{2019}) + ln(1 + e^{-4038}) - ln(2) \rfloor \approx \lfloor 2019 - ln(2) \rfloor = \boxed{2018}.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...