Functional Equations revisited.

Algebra Level 3

Let R \mathbb R be the set of real numbers. Let f : R R f : \mathbb R \to \mathbb R be a function such that for all real numbers x x and y y , we have

f ( x 2 ) + f ( y 2 ) = f ( x + y ) 2 2 x y . \large\ f(x^2) + f(y^2) = f(x + y)^2 - 2xy.

Let S = n = 2019 2019 f ( n ) . \large\ S = \sum _{ n=-2019 }^{ 2019 }{ f\left( n \right) }.

Determine the number of possible values of S S .

2039191 2031919 2019391 2093919

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jun 24, 2019

Note that (putting x = y = 0 x=y=0 ) 2 f ( 0 ) = f ( 0 ) 2 2f(0) = f(0)^2 , so that either f ( 0 ) = 0 f(0)=0 or f ( 0 ) = 2 f(0)=2 .

If f ( 0 ) = 2 f(0)=2 then 2 f ( x 2 ) = f ( x 2 ) + f ( ( x ) 2 ) = f ( 0 ) 2 + 2 x 2 = 4 + 2 x 2 2f(x^2) \; = \ f(x^2) + f((-x)^2) \; =\; f(0)^2 + 2x^2 \; = \; 4 + 2x^2 so that f ( u ) = u + 2 f(u) = u + 2 for all u 0 u \ge 0 . Then x 2 + y 2 + 4 = f ( x 2 ) + f ( y 2 ) = f ( x + y ) 2 2 x y x^2 + y^2 + 4 \; = \; f(x^2) + f(y^2) \;= \; f(x+y)^2 - 2xy so that ( x + y ) 2 + 4 = f ( x + y ) 2 = ( x + y + 2 ) 2 = ( x + y ) 2 + 4 + 4 ( x + y ) (x+y)^2 + 4 \; = \; f(x+y)^2 \; = \; (x+y+2)^2 \; = \; (x+y)^2 + 4 + 4(x+y) for any x , y x,y such that x + y 0 x+y \ge 0 . This is not possible, and hence f ( 0 ) = 0 f(0)=0 .

Thus 2 f ( x 2 ) = f ( x 2 ) + f ( ( x ) 2 ) = f ( 0 ) 2 + 2 x 2 = 2 x 2 2f(x^2) \; = \; f(x^2) + f((-x)^2) \; = \; f(0)^2 + 2x^2 \; = \; 2x^2 so that f ( u ) = u f(u) = u for all u 0 u \ge 0 , and x 2 + y 2 = f ( x 2 ) + f ( y 2 ) = f ( x + y ) 2 2 x y x^2 + y^2 \; = \; f(x^2) + f(y^2) \; = \; f(x+y)^2 - 2xy so that f ( x + y ) 2 = ( x + y ) 2 f(x+y)^2 \; = \; (x+y)^2 for all x , y x,y , and hence f ( u ) = u |f(u)| = |u| for all u R u \in \mathbb{R} No other restrictions are placed on f f by the given condition. Thus we deduce that S f = n = 2019 2019 f ( n ) = n = 1 2019 [ f ( n ) + f ( n ) ] = n = 1 2019 [ n + f ( n ) ] = 2 n A f n S_f \; = \; \sum_{n=-2019}^{2019}f(n) \; = \; \sum_{n=1}^{2019}\big[f(n) + f(-n)\big] \; = \; \sum_{n =1}^{2019} \big[n + f(-n)\big] \; = \; 2\sum_{n \in A_f}n where A f = { n Z 2019 n 1 , f ( n ) > 0 } A_f \; = \; \big\{ n \in \mathbb{Z} \,\big|\,-2019 \le n \le -1 \;,\; f(-n) > 0 \big\} Thus S f S_f can be any even integer between 0 0 and 2 × 1 2 × 2019 × 2020 = 2019 × 2020 2 \times \tfrac12 \times 2019 \times 2020 = 2019 \times 2020 . Thus there are 1 + 2019 × 1010 = 2039191 1 + 2019 \times 1010 = \boxed{2039191} possible values of S f S_f .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...