Functional (JEE)

Algebra Level 5

Let f : R R f:\mathbb{R} \rightarrow \mathbb{R} be a function such that g ( f ( x ) ) = x g(f(x))=x and h ( g ( g ( x ) ) ) = x h(g(g(x)))=x for all x R x \in \mathbb{R} .

Then sum of all a [ 0 , π ] a \in [0, \pi] such that:

(i) h ( x ) = f ( x ) + x h(x) = f(x) +x

(ii) f ( f ( x ) x ) = f ( x ) + 2 cos ( a ) x f(f(x)-x) = f(x) +2\cos(a)x

5 π 12 \dfrac{5\pi}{12} π \pi 3 π 5 \dfrac{3\pi}{5} 4 π 5 \dfrac{4\pi}{5}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sid Patak
Mar 2, 2021

GIVEN: g ( f ( x ) ) = x \text{GIVEN: }\color{#3D99F6}g(f(x)) = x h ( g ( g ( x ) ) ) = x h ( g ( g ( f ( x ) ) ) ) = h ( g ( x ) ) = f ( x ) h ( g ( f ( x ) ) ) = h ( x ) = f ( f ( x ) ) h(g(g(x)))=x \implies h(g(\textcolor{#3D99F6} {g(f(x)})))=h(g(\textcolor{#3D99F6} {x}))=f(x) \implies h(\textcolor{#3D99F6}{g(f(x))}) = h(\textcolor{#3D99F6} {x}) = f(f(x)) .

Given: (i): h ( x ) = f ( x ) + x f ( f ( x ) ) = f ( x ) + x h(x) = f(x) +x \implies f(f(x))=f(x) +x

Let f ( x ) = x f(x) = x in equation (i) to get: (i): f ( x ) = x + f 1 ( x ) x = f ( x ) f 1 ( x ) f(x)=x +f^{-1}(x) \implies x = f(x) - f^{-1}(x)

Substitute this value of x in the LHS of equation (ii) to get (ii): f ( f ( x ) ( f ( x ) f 1 ( x ) ) ) = f ( f 1 ( x ) ) = f ( x ) + 2 cos ( a ) x x = f ( x ) + 2 cos ( a ) x f(f(x)-(f(x) - f^{-1}(x))) = f(f^{-1}(x)) = f(x) +2\cos(a)x \implies x = f(x)+2\cos(a)x

Let 2 cos ( a ) = t f ( x ) = x ( 1 t ) 2\cos(a) = t \implies f(x) = x(1-t)

Substitute f(x) in equation (i) to get: x ( 1 t ) 2 = x ( 1 t ) + x t = 1 ± 5 2 cos ( a ) = 1 ± 5 4 x(1-t)^2 = x(1-t)+x \implies t = \dfrac{1 \pm \sqrt{5}}{2} \implies \cos(a) = \dfrac{1 \pm \sqrt{5}}{4}

a = { π 5 , 3 π 5 } SUM= 4 π 5 a = \{\dfrac{\pi}{5}, \dfrac{3\pi}{5}\} \implies \text{SUM= } \dfrac{4\pi}{5}

Nice problem, enjoyed it!

Veselin Dimov - 3 months, 1 week ago
Ritabrata Roy
Mar 3, 2021

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...