Functional Limit

Algebra Level 3

lim h 0 f ( 2 h + 2 + h 2 ) f ( 2 ) f ( h h 2 + 1 ) f ( 1 ) \large \lim_{h \rightarrow 0} \frac{f(2h + 2 + h^2) - f(2)}{f(h - h^2 + 1) - f(1)}

Given f ( 2 ) = 6 f'(2) = 6 and f ( 1 ) = 4 f'(1) = 4 , evaluate the limit above.

3 Does Not Exist 3 2 -\frac{3}{2} 3 2 \frac{3}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ayush Verma
Nov 16, 2014

A p p l y i n g L H o ^ p i t a l s r u l e , A n s . = l i m h 0 ( 2 h + 2 ) f ( 2 h + 2 + h 2 ) ( 1 2 h ) f ( h h 2 + 1 ) = 2 f ( 2 ) f ( 1 ) = 3 Applying\quad L'Hôpital'srule,\\ \\ Ans.={ lim }_{ h\rightarrow 0 }\cfrac { \left( 2h+2 \right) f^{ ' }\left( 2h+2+{ h }^{ 2 } \right) }{ \left( 1-2h \right) f^{ ' }\left( { h-h }^{ 2 }+1 \right) } \\ \quad =\cfrac { 2f^{ ' }\left( 2 \right) }{ f^{ ' }\left( 1 \right) } =3

Deepanshu Gupta
Nov 16, 2014

Let given limit as "L" and Note That :

L = f ( 2 ) f ( 1 ) × lim h 0 2 h + h 2 h h 2 L = f ( 2 ) f ( 1 ) × lim h 0 2 + h 1 h L = 2 × f ( 2 ) f ( 1 ) = 3 Q . E . D L\quad =\quad \frac { f^{ ' }\left( 2 \right) }{ f^{ ' }\left( 1 \right) } \times \lim _{ h\rightarrow 0 }{ \cfrac { 2h\quad +\quad { h }^{ 2 } }{ h\quad -\quad { h }^{ 2 } } } \\ \\ L\quad =\quad \frac { f^{ ' }\left( 2 \right) }{ f^{ ' }\left( 1 \right) } \times \lim _{ h\rightarrow 0 }{ \cfrac { 2\quad +\quad { h } }{ 1\quad -\quad { h } } } \quad \\ \\ L\quad =\quad 2\times \frac { f^{ ' }\left( 2 \right) }{ f^{ ' }\left( 1 \right) } \quad =\quad 3\quad \quad Q.E.D .


Note: Here I used first principle differentiation rule :

f ( a ) = lim h 0 f ( a + h ) f ( a ) h f^{ ' }\left( a \right) \quad =\quad \lim _{ h\rightarrow 0 }{ \frac { f\left( a+h \right) \quad -\quad f\left( a \right) }{ h } } .


Nice ! but don't you think that it is over rated very much ! ( No offence )

Karan Shekhawat - 6 years, 6 months ago

Log in to reply

Yes it is!!

Parth Lohomi - 6 years, 6 months ago

Damn ! A Calculation mistake .

Keshav Tiwari - 6 years, 6 months ago

Log in to reply

It happens sometimes :)) hard luck!!!

Parth Lohomi - 6 years, 6 months ago

nice deepanshu!!

Parth Lohomi - 6 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...