Functional reminder

Algebra Level 3

If f ( x ) = x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 f\left( x \right) = { x }^{ 6 }+{ x }^{ 5 }+{ x }^{ 4 }+{ x }^{ 3 }+{ x }^{ 2 }+{ x }+1 then find the reminder when we divide f ( x 7 ) f\left( { x }^{ 7 } \right) by f ( x ) f\left( x \right) .

0 x 7 x^7 1 1 x 7 1-{ x }^{ 7 } x 7 1 x^7-1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Mehedi Hasan
Oct 26, 2017

f ( x ) f\left( x \right) = x 7 + x 6 + x 5 + ={ x }^{ 7 }+{ x }^{ 6 } +{ x }^{ 5 }+ x 4 + x 3 + x 2 + x + 1 { x }^{ 4 }+{ x }^{ 3 }+{ x }^{ 2 }+x+1

f ( x 7 ) = x 13 + x 12 + x 11 + x 10 + x 9 + x 8 + 1 \therefore f\left( { x }^{ 7 } \right) ={ x }^{ 13 }+{ x }^{ 12 }+{ x }^{ 11 }+{ x }^{ 10 }+{ x }^{ 9 }+{ x }^{ 8 }+1

= x 13 + x 12 + x 11 + x 10 + x 9 + x 8 + x 7 + 1 x 7 ={ x }^{ 13 }+{ x }^{ 12 }+{ x }^{ 11 }+{ x }^{ 10 }+{ x }^{ 9 }+{ x }^{ 8 }+{ x }^{ 7 }+1-{ x }^{ 7 }

= x 7 ( x 6 + x 5 + x 4 + x 3 + x 2 + x + 1 ) + 1 x 7 ={ x }^{ 7 }({ x }^{ 6 }+{ x }^{ 5 }+{ x }^{ 4 }+{ x }^{ 3 }+{ x }^{ 2 }+x+1)+1-{ x }^{ 7 }

= x 7 × f ( x ) + 1 x 7 ={ x }^{ 7 }\times f\left( x \right) +1-{ x }^{ 7 }

Now by dividing with f ( x ) f\left( x \right) we get the reminder 1 x 7 1-{ x }^{ 7 }

2 pending reports

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...