A function f : R → R satisfies the following functional equation ∀ x ∈ / { − 1 , 1 } .
f ( x + 1 x − 3 ) + f ( 1 − x 3 + x ) = x
If f ( 2 1 ) = n m . find the value of m + n .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Observe that if g ( x ) = x + 1 x − 3 , then g − 1 ( x ) = 1 − x 3 + x = − g ( − x ) . Thus the identity becomes:
f ( g ( x ) ) + f ( − g ( − x ) ) = x ,
for all x ∈ / { − 1 , 1 } . Let
Thus, f ( 3 − 5 ) = 7 − f ( 2 1 ) = 2 1 + 3 5 + f ( 2 1 )
which gives f ( 2 1 ) = 1 2 2 9 .
Problem Loading...
Note Loading...
Set Loading...
First we make f ( x + 1 x − 3 ) = f ( 2 1 ) , ⟹ x + 1 x − 3 = 2 1 or x = 7 . Then f ( 1 − x 3 + x ) = f ( 1 − 7 3 + 7 ) = f ( − 3 5 ) . Therefore,
f ( 2 1 ) + f ( − 3 5 ) = 7 . . . ( 1 )
Putting x = 2 1 ⟹ f ( 2 1 + 1 2 1 − 3 ) = f ( − 3 5 ) and f ( 1 − 2 1 3 + 2 1 ) = f ( 7 ) , then
f ( − 3 5 ) + f ( 7 ) = 2 1 . . . ( 2 )
Similarly x = − 3 5 ⟹ f ( − 3 5 + 1 − 3 5 − 3 ) = f ( 7 ) and f ( 1 + 3 5 3 − 3 5 ) = f ( 2 1 ) , then
f ( 7 ) + f ( 2 1 ) = − 3 5 . . . ( 3 )
From ( 1 ) − ( 2 ) + ( 3 ) :
2 f ( 2 1 ) = 7 − 2 1 + 3 5 = 6 2 9 ⟹ f ( 2 1 ) = 1 2 2 9
Therefore m + n = 2 9 + 1 2 = 4 1 .