Functions #1

Calculus Level pending

Find the domain of the following function:

3 y + 2 x 4 = 2 4 x 2 1 \large 3^y+2^{x^4}=2^{4x^2-1}

If your answer is of the form :

( m 1 n , m + 1 n ) ( m 1 n , m + 1 n ) (\dfrac{-\sqrt{m}-1}{\sqrt{n}},\dfrac{-\sqrt{m}+1}{\sqrt{n}}) \cup (\dfrac{\sqrt{m}-1}{\sqrt{n}},\dfrac{\sqrt{m}+1}{\sqrt{n}})

Enter : m + n m+n


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

It is easy to see that : 2 4 x 2 1 2 x 4 > 0 2^{4x^2-1}-2^{x^4}>0

2 4 x 2 1 x 4 > 1 4 x 2 1 x 4 > 0 2^{4x^2-1-x^4}>1 \implies 4x^2-1-x^4>0

x 4 4 x 2 + 1 < 0 ( x 2 2 ) 2 < 3 x^4-4x^2+1 < 0 \implies (x^2-2)^2<3

3 + 2 < x 2 < 3 + 2 -\sqrt{3}+2 < x^2 < \sqrt{3}+2

4 2 3 2 < x 2 < 4 + 2 3 2 \dfrac{4-2\sqrt{3}}{2}<x^2<\dfrac{4+2\sqrt{3}}{2}

( 2 3 ) 2 2 < x 2 < ( 2 + 3 ) 2 2 \dfrac{(2-\sqrt{3})^2}{2}<x^2<\dfrac{(2+\sqrt{3})^2}{2}

Solving the two conditions separately , we get :

x ( 3 1 2 , 3 + 1 2 ) ( 3 1 2 , 3 + 1 2 ) x \in (\dfrac{-\sqrt{3}-1}{\sqrt{2}},\dfrac{-\sqrt{3}+1}{\sqrt{2}}) \cup (\dfrac{\sqrt{3}-1}{\sqrt{2}},\dfrac{\sqrt{3}+1}{\sqrt{2}})

Hence , m = 3 \boxed{m=3} and n = 2 \boxed{n=2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...