If are real roots of the equation , find
Note: denotes greatest integer function and denotes fractional part of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
It is given that:
[ x ] 1 + [ 2 x ] 1 = { x } + 3 1
⇒ { x } = [ x ] 1 + [ 2 x ] 1 − 3 1 = ⎩ ⎪ ⎨ ⎪ ⎧ [ x ] 1 + 2 [ x ] 1 − 3 1 [ x ] 1 + 2 [ x ] + 1 1 − 3 1 { x } < 0 . 5 { x } ≥ 0 . 5
= ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ 6 [ x ] 9 − 2 [ x ] 6 [ x ] 2 + 3 [ x ] 3 + 8 [ x ] − 2 [ x ] 2 { x } < 0 . 5 { x } ≥ 0 . 5
Since 0 < { x } < 1 :
⇒ ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ 0 < 6 [ x ] 9 − 2 [ x ] < 1 0 < 6 [ x ] 2 + 3 [ x ] 3 + 8 [ x ] − 2 [ x ] 2 < 1 ⇒ 2 ≤ [ x ] ≤ 4
Let us check out the values of { x } for [ x ] = 2 , 3 , 4 .
[ x ] 2 3 4 6 [ x ] 9 − 2 [ x ] 1 2 5 6 1 2 4 1 6 [ x ] 2 + 3 [ x ] 3 + 8 [ x ] − 2 [ x ] 2 3 0 1 1 < 0 . 5 7 1 < 0 . 5 3 6 1 < 0 . 5 x = [ x ] + { x } 1 2 2 9 6 1 9 2 4 9 7
Therefore, x 1 + x 2 + x 3 = 1 2 2 9 + 6 1 9 + 2 4 9 7 = 2 4 2 3 1 = 9 . 6 2 5