Functions

Algebra Level 5

If x 1 , x 2 , x 3 x_{1},x_{2},x_{3} are real roots of the equation 1 [ x ] + 1 [ 2 x ] = { x } + 1 3 {\frac{1}{[x]}+\frac{1}{[2x]}=\{x\}+\frac{1}{3}} , find x 1 + x 2 + x 3 x_{1}+x_{2}+x_{3}

Note: [ . ] [.] denotes greatest integer function and { . } \{.\} denotes fractional part of x x .


The answer is 9.625.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 13, 2015

It is given that:

1 [ x ] + 1 [ 2 x ] = { x } + 1 3 \dfrac {1}{[x]} + \dfrac {1}{[2x]} = \{x\} + \dfrac{1}{3}

{ x } = 1 [ x ] + 1 [ 2 x ] 1 3 = { 1 [ x ] + 1 2 [ x ] 1 3 { x } < 0.5 1 [ x ] + 1 2 [ x ] + 1 1 3 { x } 0.5 \Rightarrow \{x\} = \dfrac {1}{[x]} + \dfrac {1}{[2x]} - \dfrac{1}{3} = \begin{cases} \dfrac {1}{[x]} + \dfrac {1}{2[x]} - \dfrac{1}{3} & \{x\} < 0.5 \\ \dfrac {1}{[x]} + \dfrac {1}{2[x]+1} - \dfrac{1}{3} & \{x\} \ge 0.5 \end{cases}

= { 9 2 [ x ] 6 [ x ] { x } < 0.5 3 + 8 [ x ] 2 [ x ] 2 6 [ x ] 2 + 3 [ x ] { x } 0.5 =\begin{cases} \dfrac {9-2[x]}{6[x]} & \{x\} < 0.5 \\ \dfrac {3+8[x]-2[x]^2}{6[x]^2+3[x]} & \{x\} \ge 0.5 \end{cases}

Since 0 < { x } < 1 \quad 0<\{x\}<1 :

{ 0 < 9 2 [ x ] 6 [ x ] < 1 0 < 3 + 8 [ x ] 2 [ x ] 2 6 [ x ] 2 + 3 [ x ] < 1 2 [ x ] 4 \Rightarrow \begin{cases} 0< \dfrac {9-2[x]}{6[x]} <1 \\ 0 < \dfrac {3+8[x]-2[x]^2}{6[x]^2+3[x]} < 1 \end{cases} \Rightarrow 2\le [x] \le 4

Let us check out the values of { x } \{x\} for [ x ] = 2 , 3 , 4 [x] = 2,3,4 .

[ x ] 9 2 [ x ] 6 [ x ] 3 + 8 [ x ] 2 [ x ] 2 6 [ x ] 2 + 3 [ x ] x = [ x ] + { x } 2 5 12 11 30 < 0.5 29 12 3 1 6 1 7 < 0.5 19 6 4 1 24 1 36 < 0.5 97 24 \begin{array} {cccc} [x] & \frac {9-2[x]}{6[x]} & \frac {3+8[x]-2[x]^2}{6[x]^2+3[x]} & x = [x]+\{x\} \\ 2 & \dfrac{5}{12} & \color{#D61F06} {\dfrac{11}{30}<0.5} & \dfrac{29}{12} \\ 3 & \dfrac{1}{6} & \color{#D61F06} {\dfrac{1}{7}<0.5} & \dfrac{19}{6} \\ 4 & \dfrac{1}{24} & \color{#D61F06} {\dfrac{1}{36}<0.5} & \dfrac{97}{24} \end{array}

Therefore, x 1 + x 2 + x 3 = 29 12 + 19 6 + 97 24 = 231 24 = 9.625 x_1+x_2+x_3 = \dfrac{29}{12}+ \dfrac{19}{6} + \dfrac{97}{24} = \dfrac{231}{24} = \boxed{9.625}

nice solution sir

Tanishq Varshney - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...