Functions 1.3 (Domain)

Algebra Level 2

Find the domain of the following real function:

f ( x ) = ln ( 4 x 2 + 1 2 x ) \large f(x)=\ln(\sqrt{4x^2+1}-2x)

( , 1 / 2 ] (-∞,-1/2] ( 0 , + ) (0,+∞) [ 0 , + ) [0,+∞) ( , + ) (-∞,+∞)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Aris M
Mar 13, 2020

For f f to be well defined, the following two restrictions must be true for x x :

  1. The expression under the radical must be nonnegative. Therefore: 4 x 2 + 1 0 x ( , + ) 4x^{2}+1\geqslant 0 \Leftrightarrow x\in (-∞,+∞)
  2. The argument of the logarithm must be strictly positive. Therefore: 4 x 2 + 1 2 x > 0 \sqrt{4x^{2}+1}-2x > 0

We consider two cases:

Case A: x 0 \boxed{x\geqslant 0}

4 x 2 + 1 > 2 x 4 x 2 + 1 > 4 x 2 1 > 0 \sqrt{4x^{2}+1}> 2x \Leftrightarrow 4x^{2}+1> 4x^{2}\Leftrightarrow 1> 0 which is true x [ 0 , + ) \forall x \in [0,+∞)

Case B: x < 0 \boxed{x < 0}

4 x 2 + 1 > 2 x \sqrt{4x^{2}+1}> 2x . However, we notice that 4 x 2 + 1 > 0 \sqrt{4x^{2}+1}>0 \enspace and 2 x < 0 x ( , 0 ) \enspace 2x <0 \enspace \forall x \in (-∞,0) .

Therefore, 4 x 2 + 1 > 2 x 4 x 2 + 1 2 x > 0 \sqrt{4x^{2}+1}> 2x \Leftrightarrow \sqrt{4x^{2}+1}-2x > 0 in both cases.

Therefore, in any case: x ( , + ) x\in (-∞,+∞) , which is the domain of the function.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...