Functions $

Algebra Level 3

Let us define a binary operator, $ \$ such that

$ ( a , b ) = { a b a + 2 2 a , if a + b 3 a b b 2 2 b , if a + b > 3 \$(a,b) = \begin{cases} \frac{ab-a+2}{2a} & , \quad & \text{ if } a+b \leq 3 \\ \frac{ab-b-2}{-2b} & , \quad & \text{ if } a+b > 3 \\ \end{cases}

Find $ ( 2 , 1 ) + $ ( 2 , 4 ) \$(2,1) + \$(2,4) .

2 10 1 4 \frac14 1 2 \frac12 6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ameer Deeb
Feb 23, 2016

start step by step: $(2,1)=2+1<=3 so 6-1+2\4= 1\2 $(2,4)2+4>3 so 8-4-2-8= -1\4 1\2+(-1\4)=1\4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...