Functions

Algebra Level 2

Let f ( x , y ) = y + x f(x,y) = y + x , f ( x , y ) = 2 a f(x,y) = \sqrt{2a} and x 2 + y 2 = 2 b x^2 + y^2 = -2b . Find f ( 1 x , 1 y ) f \left( \dfrac1x , \dfrac1y\right) in terms of a a and b b .

2 a a + b \frac {\sqrt{2a}}{a+b} 2 a 2 a + 2 b \frac {\sqrt{2a}}{2a+2b} 2 a a b \frac {\sqrt{2a}}{a-b} 2 a 2 a 2 b \frac {\sqrt{2a}}{2a-2b}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hung Woei Neoh
Jun 30, 2016

f ( x , y ) = y + x = x + y f(x,y)= y+x = x+y \implies Eq.(1)

f ( x , y ) = 2 a f(x,y) = \sqrt{2a} \implies Eq.(2)

x 2 + y 2 = 2 b x^2+y^2 = -2b \implies Eq.(3)

Eq.(1) = Eq.(2):

x + y = 2 a x+y=\sqrt{2a} \implies Eq.(4)

Now, we are looking for the value of f ( 1 x , 1 y ) f\left(\dfrac{1}{x},\dfrac{1}{y}\right) . We have:

f ( 1 x , 1 y ) = 1 x + 1 y = x + y x y f\left(\dfrac{1}{x},\dfrac{1}{y}\right)=\dfrac{1}{x}+\dfrac{1}{y} =\dfrac{x+y}{xy}

Substitute Eq.(4) in here:

f ( 1 x , 1 y ) = x + y x y = 2 a x y f\left(\dfrac{1}{x},\dfrac{1}{y}\right) =\dfrac{x+y}{xy}= \dfrac{\sqrt{2a}}{xy}

From Eq.(3):

x 2 + y 2 = 2 b x 2 + 2 x y + y 2 = 2 x y 2 b ( x + y ) 2 = 2 x y 2 b x^2+y^2 = -2b\\ x^2+2xy+y^2=2xy-2b\\ (x+y)^2 = 2xy-2b

Substitute Eq.(4) here too:

( 2 a ) 2 = 2 x y 2 b 2 a = 2 x y 2 b x y = a + b (\sqrt{2a})^2 =2xy-2b\\ 2a=2xy-2b\\ xy=a+b

Therefore,

f ( 1 x , 1 y ) = 2 a x y = 2 a a + b f\left(\dfrac{1}{x},\dfrac{1}{y}\right) = \dfrac{\sqrt{2a}}{xy}=\boxed{\dfrac{\sqrt{2a}}{a+b}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...