Functions

Geometry Level 3

f ( x 2 ) f ( y 2 ) 1 2 ( f ( x 2 y 2 ) + f ( x 2 y 2 ) ) \large f(x^2) f(y^2) - \dfrac12 \left( f\left( \dfrac{x^2}{y^2}\right) + f(x^2 y^2) \right)

What is the value of the expression above, it f ( x ) = cos ( log x ) f(x) = \cos(\log x) ?

None of the others 1 2 \frac12 2 -2 1 -1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 14, 2017

χ = f ( x 2 ) f ( y 2 ) 1 2 ( f ( x 2 y 2 ) + f ( x 2 y 2 ) ) = cos ( log x 2 ) cos ( log y 2 ) 1 2 ( cos ( log x 2 log y 2 ) + cos ( log ( x 2 y 2 ) ) ) = cos ( 2 log x ) cos ( 2 log y ) 1 2 ( cos ( 2 log x 2 log y ) + cos ( 2 log x + 2 log y ) ) = cos α cos β 1 2 ( cos ( α β ) + cos ( α + β ) ) = cos α cos β 1 2 ( cos α cos β + sin α sin β + cos α cos β sin α sin β ) = cos α cos β cos α cos β = 0 \begin{aligned} \chi & = f \left(x^2 \right) f \left(y^2 \right) - \frac 12 \left( f \left(\frac {x^2}{y^2} \right) + f \left(x^2 y^2\right)\right) \\ & = \cos \left(\log x^2 \right) \cos \left(\log y^2 \right) - \frac 12 \left( \cos \left(\frac {\log x^2}{\log y^2} \right) + \cos \left(\log \left(x^2 y^2\right) \right)\right) \\ & = \cos \left({\color{#3D99F6}2 \log x} \right) \cos \left({\color{#D61F06}2 \log y} \right) - \frac 12 \left( \cos \left({\color{#3D99F6}2 \log x} - {\color{#D61F06}2 \log y} \right) + \cos \left({\color{#3D99F6}2 \log x} + {\color{#D61F06}2 \log y} \right)\right) \\ & = \cos {\color{#3D99F6}\alpha} \cos {\color{#D61F06}\beta} - \frac 12 \left( \cos \left({\color{#3D99F6}\alpha} - {\color{#D61F06}\beta} \right) + \cos \left({\color{#3D99F6}\alpha} + {\color{#D61F06}\beta} \right)\right) \\ & = \cos \alpha \cos \beta - \frac 12 \left( \cos \alpha \cos \beta + \sin \alpha \sin \beta + \cos \alpha \cos \beta - \sin \alpha \sin \beta \right) \\ & = \cos \alpha \cos \beta - \cos \alpha \cos \beta \\ & = 0 \end{aligned}

Therefore, the answer is None of the others \boxed{\text{None of the others}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...