A calculus problem by Aakhyat Singh

Calculus Level 3

If e f ( x ) = 10 + x 10 x e^{f(x)}=\dfrac {10+x}{10-x} , for 10 < x < 10 -10<x<10 and f ( x ) = k f ( 200 x x 2 + 100 ) f(x)=kf \left(\dfrac {200x}{x^2+100} \right) , what is 10 k 10k ?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Aug 15, 2017

If e f ( x ) = 10 + x 10 x e^{f(x)} = \frac{10+x}{10-x} for x ( 10 , 10 ) , x \in (-10, 10), then f ( x ) = l n ( 10 + x 10 x ) . f(x) = ln(\frac{10+x}{10-x}). Now if f ( x ) = k f ( 200 x x 2 + 100 ) f(x) = k \cdot f(\frac{200x}{x^2 + 100}) , then we obtain:

l n ( 10 + x 10 x ) = k l n ( 10 + 200 x x 2 + 100 10 200 x x 2 + 100 ) ; ln(\frac{10+x}{10-x}) = k \cdot ln(\frac{10 + \frac{200x}{x^2+100}}{10 - \frac{200x}{x^2 + 100}});

or l n ( 10 + x 10 x ) = l n ( 100 + 20 x + x 2 100 20 x + x 2 ) k ; ln(\frac{10+x}{10-x}) = ln(\frac{100 + 20x + x^2}{100 - 20x + x^2})^{k};

or l n ( 10 + x 10 x ) = l n ( 10 + x 10 x ) 2 k ln(\frac{10+x}{10-x}) = ln(\frac{10 + x}{10 - x})^{2k} .

We finally arrive at 2 k = 1 k = 1 2 2k = 1 \Rightarrow k = \frac{1}{2} , and 10 k = 5 . 10k = \boxed{5}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...