An algebra problem by Aakhyat Singh

Algebra Level 4

If 3f(x)+5f(1/x)=-3+1/x for all non-zero x, then f(x)=

(5x+6-3/x)/16 (5x-6+3/x)/16 (5x-6-3/x)/16 None of the above

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Marco Brezzi
Aug 20, 2017

3 f ( x ) + 5 f ( 1 x ) = 3 + 1 x c c c c c c c c ( 1 ) 3f(x)+5f\left(\dfrac{1}{x}\right)=-3+\dfrac{1}{x} \phantom{cccccccc} (1)

If we set x 1 x x\mapsto \dfrac{1}{x} in ( 1 ) (1) we get

3 f ( 1 x ) + 5 f ( x ) = 3 + x c c c c c i c c c c ( 2 ) 3f\left(\dfrac{1}{x}\right)+5f(x)=-3+x\phantom{cccccicccc} (2)

From 5 ( 2 ) 3 ( 1 ) 5(2)-3(1)

15 f ( 1 x ) + 25 f ( x ) 9 f ( x ) 15 f ( 1 x ) = 15 + 5 x + 9 3 x 15f\left(\dfrac{1}{x}\right)+25f(x)-9f(x)-15f\left(\dfrac{1}{x}\right)=-15+5x+9-\dfrac{3}{x}

Simplifying like terms and solving for f ( x ) f(x)

f ( x ) = 5 x 6 3 x 16 f(x)=\boxed{\dfrac{5x-6-\dfrac{3}{x}}{16}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...