f ( x ) = ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ x 2 a ( 1 − x sin x ) + b cos x + 5 3 ( 1 + ( x 2 c x + d x 3 ) ) x 1 if x < 0 if x = 0 if x > 0
A piecewise function f ( x ) is defined as shown above, where a , b , c and d be constants.
If f ( x ) is continuous at x = 0 , find 2 e d + 7 c − 3 a − 5 b .
Clarification : e ≈ 2 . 7 1 8 2 8 is the Euler's number .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Maclaurin Series
For f ( x ) to be continuous at x = 0 , ⟹ x → 0 − lim f ( x ) = x → 0 + lim f ( x ) = f ( 0 ) = 3 .
f − ( x ) = x 2 a ( 1 − x sin x ) + b cos x + 5 By Maclaurin series = x 2 1 [ a ( 1 − x ( x − 3 ! x 3 + 5 ! x 5 − . . . ) ) + b ( 1 − 2 ! x 2 + 4 ! x 4 − . . . ) + 5 ] = x 2 a − a + 3 ! a x − 5 ! a x 3 − . . . + x 2 b − 2 ! b + 4 ! b x 2 − . . . + x 2 5
For f − ( 0 ) = 3 ,
⟹ ⎩ ⎨ ⎧ a + b + 5 = 0 − a − 2 b = 3 ⟹ b = − 4 ⟹ a = − 1
f + ( x ) = ( 1 + ( x 2 c x + d x 3 ) ) x 1 = ( 1 + ( x 1 x 2 c + d ) ) x 1 For f + ( 0 ) to converge when x → 0 + , c = 0 = [ ( 1 + d x 1 1 ) d x 1 ] d
For f + ( 0 ) = 3 ,
⟹ f + ( 0 ) ⟹ d = x → 0 + lim [ ( 1 + d x 1 1 ) d x 1 ] d = e d = 3 = ln 3
Therefore, 2 e d + 7 c − 3 a − 5 b = 2 e ln 3 + 7 ( 0 ) − 3 ( − 1 ) − 5 ( − 4 ) = 6 + 0 + 3 + 2 0 = 2 9