Functions and Vertex

Algebra Level pending

f g ( x ) = x 9 , g ( x ) = x + 2 2 fg(x)=x-9,\quad g(x)=\sqrt { \frac { x+2 }{ 2 } }

If I use f ( x ) f(x) to make a graph, the vertex (or the turning point) of f ( x ) f(x) is ( x , y ) (x,y) .

Find the value of x y x-y .

PS: This is my first time to make a problem. If there's something wrong, please tell me.


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Adam Zaim
Sep 20, 2014

We need to find g 1 ( x ) { g }^{ -1 }(x) so we can find f g [ g 1 ( x ) ] = f ( x ) fg[{ g }^{ -1 }(x)]=f(x) .

If g 1 ( x ) = y { g }^{ -1 }(x)=y , then g ( y ) = x g(y)=x

y + 2 2 = x y + 2 2 = x 2 y + 2 = 2 x 2 y = 2 x 2 2 g 1 ( x ) = 2 x 2 2 \sqrt { \frac { y+2 }{ 2 } } =x\\ \frac { y+2 }{ 2 } ={ x }^{ 2 }\\ y+2=2{ x }^{ 2 }\\ y=2{ x }^{ 2 }-2\\ { g }^{ -1 }(x)={ 2x }^{ 2 }-2

Now you can find f ( x ) f(x) .

f g [ g 1 ( x ) ] = 2 x 2 2 9 f ( x ) = 2 x 2 11 fg[{ g }^{ -1 }(x)]={ 2x }^{ 2 }-2-9\\ f(x)={ 2x }^{ 2 }-11

V e r t e x = ( b 2 a , f ( b 2 a ) ) a x 2 + b x + c = 2 x 2 11 a = 2 , b = 0 , c = 11 b 2 a = 0 4 = 0 f ( b 2 a ) = f ( 0 ) = 2 ( 0 ) 2 11 = 11 V e r t e x = ( 0 , 11 ) x y = 0 ( 11 ) = 11 Vertex=\left( \frac { -b }{ 2a } ,f\left( \frac { -b }{ 2a } \right) \right) \\ a{ x }^{ 2 }+bx+c={ 2x }^{ 2 }-11\\ a=2,\quad b=0,\quad c=-11\\ \\ \frac { -b }{ 2a } =\frac { 0 }{ 4 } =0\\ \\ f\left( \frac { -b }{ 2a } \right) =f\left( 0 \right) =2{ \left( 0 \right) }^{ 2 }-11=-11\\ \\ \therefore Vertex=\left( 0,-11 \right) \\ x-y=0-(-11)=11

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...