Functions are awesome!!!

Algebra Level 4

Find the number of functions f : R R f : \mathbb{R} \rightarrow \mathbb{R} such that f ( x + y ) = f ( x ) f ( y ) f ( x y ) f(x+y)=f(x)\cdot f(y)\cdot f(xy) for all x , y x,y in R \mathbb{R} .

Note: R \mathbb{R} denotes the set of real numbers.

4 2 1 infinite 0 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Mathh Mathh
Jul 17, 2014

Let P ( x , y ) P(x,y) be the statement f ( x + y ) = f ( x ) f ( y ) f ( x y ) f(x+y)=f(x)f(y)f(xy) .

P ( x , 0 ) f ( x ) = f ( x ) f ( 0 ) 2 { f ( x ) = 0 , x R or f ( 0 ) = ± 1 \displaystyle P(x,0)\implies f(x)=f(x)f(0)^2\implies \begin{cases}f(x)=0,\:\forall x\in\mathbb R\\\text{or}\\f(0)=\pm 1\end{cases}

So there's a solution f ( x ) = 0 \boxed{f(x)=0} x R \forall x\in\mathbb R (we can check it and it works). Let the function be different from this one. Then f ( 0 ) = ± 1 f(0)=\pm 1 .

P ( x , x ) f ( 0 ) = ± 1 = f ( x ) f ( x ) f ( x 2 ) , x R \displaystyle P(x,-x)\implies f(0)=\pm 1 =f(x)f(-x)f(-x^2),\:\forall x\in\mathbb R ∄ a R : f ( a ) = 0 ( 1 ) \displaystyle\implies \not\exists a\in\mathbb R : f(a)=0\:\:(1)

P ( x , 1 ) f ( x 1 ) = f ( x ) f ( x ) f ( 1 ) , x R ( 2 ) \displaystyle P(x,-1)\implies f(x-1)=f(x)f(-x)f(-1),\:\forall x\in\mathbb R\:\:(2)

P ( x 1 , 1 ) f ( x ) = f ( x 1 ) 2 f ( 1 ) \displaystyle P(x-1,1)\implies f(x)=f(x-1)^2 f(1) = ( 2 ) f ( x ) 2 f ( x ) 2 f ( 1 ) 2 f ( 1 ) , x R ( 3 ) \displaystyle\stackrel{(2)}=f(x)^2f(-x)^2f(-1)^2f(1),\:\forall x\in\mathbb R\:\:(3)

Replace x x with x -x in ( 3 ) (3) . Then we have: f ( x ) = f ( x ) 2 f ( x ) 2 f ( 1 ) 2 f ( 1 ) , x R ( 4 ) \displaystyle f(-x)=f(x)^2f(-x)^2f(-1)^2f(1),\:\forall x\in\mathbb R\:\:(4)

( 3 ) ( 4 ) f ( x ) = f ( x ) , x R ( 5 ) \displaystyle (3)(4)\implies f(x)=f(-x),\:\forall x\in\mathbb R\:\:(5)

\displaystyle P(x,1)\stackrel{(5)}\implies f(x+1)=f(x)^2f(1),\:\forall x\in\mathbb R\:\:(6)

\displaystyle (2)\stackrel{(5)}\implies f(x-1)=f(x)^2f(1)\:\:(7)

If we put x x in place of x 1 x-1 in ( 7 ) (7) , then f ( x ) = f ( x + 1 ) 2 f ( 1 ) , x R ( 8 ) \displaystyle f(x)=f(x+1)^2f(1),\:\forall x\in\mathbb R\:\:(8)

( 6 ) ( 8 ) f ( x + 1 ) = f ( x ) 2 f ( 1 ) = f ( x + 1 ) 4 f ( 1 ) 3 \displaystyle (6)(8)\implies f(x+1)=f(x)^2f(1)=f(x+1)^4f(1)^3 \displaystyle \stackrel{(1)}\implies f(x+1)^3=\frac{1}{f(1)^3}

f ( x + 1 ) = 1 f ( 1 ) = c f ( x ) = c , x R , c R , c 0 \displaystyle \implies f(x+1)=\frac{1}{f(1)}=c\implies f(x)=c,\:\forall x\in\mathbb R,c\in\mathbb R, c\neq 0

This means f ( x ) f(x) is a constant function, i.e. f ( x ) = c , x R , c R , c 0 \displaystyle f(x)=c,\:\forall x\in\mathbb R, c\in\mathbb R, c\neq 0

\displaystyle f(x+y)=f(x)f(y)f(x+y),\:\forall x,y\in\mathbb R\implies c=c^3\stackrel{c\neq 0}\implies c^2=1 { c = 1 or c = 1 { f ( x ) = 1 x R or f ( x ) = 1 x R \displaystyle \implies \begin{cases}c=1\\\text{or}\\c=-1\end{cases}\implies \begin{cases}\boxed{f(x)=1}\:\forall x\in\mathbb R\\\text{or}\\ \boxed{f(x)=-1}\:\forall x\in\mathbb R\end{cases}

After checking these 2 2 possible functions, we see they work.

Therefore, there are only 3 3 possible functions (all the ones I've boxed). \square

Good explanation I like it

Francis Cabanting - 6 years, 10 months ago

Nice solutions. How do we know these are the only ones?

Davy Ker - 5 years, 4 months ago

Or Compare Degree case to confirm its a constant polynomial

Dinesh Chavan - 6 years, 11 months ago

Log in to reply

It is not given that the function is a polynomial. It can be anything you want, e.g., f ( x ) = log ( sin ( x ! x ! ! 7 ln ( sec ( x ) ) ) ) f(x)=\log(\sin(x!^{\sqrt[7]{x!!}\ln(\sec(x))})) , unless we prove it is a polynomial.

mathh mathh - 6 years, 11 months ago

If f f is constant, then let it be c c , then c 3 = c c = 1 , 0 , 1 c^3=c \Rightarrow c=-1,0,1 . We can easily check that these are only solutions. So we assume the rest of the solutions are non constant.

First, f ( x ) = f ( x 1 ) 2 f ( 1 ) = ( f ( x ) f ( x ) f ( 1 ) ) 2 f ( 1 ) = f ( x 1 ) 2 f ( 1 ) = f ( x ) f(x)=f(x-1)^2f(1)=(f(x)f(-x)f(-1))^2f(1)=f(-x-1)^2f(1)=f(-x) . So we have f ( x ) = f ( x + 1 ) f ( ( x + 1 ) f ( 1 ) = f ( x + 1 ) 2 f ( 1 ) = ( f ( x ) f ( x ) f ( 1 ) ) 2 f ( 1 ) = ( f ( x ) 2 f ( 1 ) ) 2 f ( 1 ) = f ( x ) 4 f ( 1 ) 3 f ( x ) 3 = f ( 1 ) 3 f ( x ) = f ( 1 ) f(x)=f(x+1)f(-(x+1)f(-1)=f(x+1)^2f(-1)=(f(x)f(-x)f(1))^2f(-1)=(f(x)^2f(1))^2f(-1)=f(x)^4f(1)^3 \Rightarrow f(x)^3=f(1)^3 \Rightarrow f(x)=f(1) , which imply f f a constant function, contradiction.

So f ( x ) = 0 f(x)=0 , f ( x ) = 1 f(x)=-1 , f ( x ) = 1 f(x)=1 are only solutions.

Aaaaa Bbbbb
Jul 17, 2014

Having: f ( 1 ) = f ( 0 ) 2 f ( 1 ) f(1)=f(0)^2f(1) f ( 2 ) = f ( 1 ) 3 f(2)=f(1)^3 f ( 3 ) = f ( 1 ) f ( 2 ) 2 = f ( 1 ) 7 f(3)=f(1)f(2)^2=f(1)^7 f ( n ) = f ( 1 ) 2 n 1 f(n)=f(1)^{2^n-1} f ( 1 ) 2 x + y = f ( 1 ) 2 x + 2 y + 2 x y 2 \Rightarrow f(1)^{2^{x+y}}=f(1)^{2^x+2^y+2^{xy}-2} f ( 1 ) = 1 1 0 , a n s w e r = 3 \Rightarrow f(1)=1|-1|0, \Rightarrow answer=\boxed{3}

This only proves 3 solutions for the naturals, when f is over the reals

Neel Nanda - 6 years, 10 months ago

Here is a demonstration based on the first result you found ( f ( n ) = f ( 1 ) 2 n 1 f(n)=f(1)^{2^{n}-1} ). We can show recursively (starting from f ( x + 1 ) f(x+1) ) that f ( x + n ) = f ( x ) 2 n f ( 1 ) 2 n 1 f(x+n)=f(x)^{2^{n}}f(1)^{2^{n-1}} but since f ( n ) = f ( 1 ) 2 n 1 f(n)=f(1)^{2^{n}-1} then f ( x + n ) = f ( x ) 2 n f ( n ) f(x+n)=f(x)^{2^{n}}f(n) . Also, from the original equation, we know that f ( x + n ) = f ( x ) f ( n ) f ( x n ) f(x+n)=f(x)f(n)f(xn) . From here, it's trivial.

Arousse Fares - 2 years, 3 months ago
Matthew Yu
Jul 17, 2014

Let the degree of the LHS be d, we see that the degree of the RHS has to be 3d. Thus, we conclude that the function must be constant. Try y = 0 y=0 , the equation becomes f ( x ) = f ( x ) f ( 0 ) 2 f(x) = f(x)f(0)^2 . Thus we find f ( 0 ) = 1 f(0)=1 .

Letting x = y = 2 x=y=2 , we see that f ( 4 ) = f ( 2 ) 2 f ( 4 ) f(4) = f(2)^2f(4) . Leading us to solutions f ( 2 ) = 1 , f ( 2 ) = 1 f(2) = -1, f(2) = 1 . Another easy solution is to notice that f ( x ) = 0 f(x) = 0 works by a simple substitution. Thus we have 3 \boxed{3} solutions

how if we take f(x)=f(x+y)/f(y).f(xy),similarly for f(y) and f(xy) we have total of 3 real valued functions. so we can say that there are total 3 functions possible. correct me where u feel am wrong.

Nikhil Tripathi - 6 years, 10 months ago

But what if f isn't a polynomial?

Bogdan Simeonov - 6 years, 11 months ago

In this case, its a constant polynomial by just comparing degrees. Sorry i don't understand what your question means.

Matthew Yu - 6 years, 11 months ago

Log in to reply

The function does not have to be a polynomial. As I said in my other comments here, the function could as well be something like this: f ( x ) = log ( sin ( x ! x ! ! 7 ln ( sec ( x ) ) ) ) f(x)=\log(\sin(x!^{\sqrt[7]{x!!}\ln(\sec(x))})) , unless we prove it is a polynomial.

mathh mathh - 6 years, 10 months ago

Substituting y 0 y\rightarrow 0 we get

f ( x ) = f ( x ) f ( 0 ) 2 f(x) = f(x)f(0)^{2}

f ( 0 ) = ± 1 or f ( x ) = 0 f(0) = \pm 1 \text{ or } \boxed{f(x) = 0}

Substituting y x y \rightarrow x we get

f ( 2 x ) = f ( x ) 2 f ( x 2 ) f(2x) = f(x)^{2}f(x^{2}) __(1)

Let d e g ( f ( x ) ) = n deg(f(x)) = n

(1); n = n 4 n = n^{4}

n = 0 , 1 n = 0, 1

Let f ( x ) = a x + b f(x) = ax+b

(1); 2 a x + b = a 3 x 4 + 2 a 2 b x 3 + a 2 b x 2 + a b 2 x 2 + 2 a b 2 x + b 3 2ax+b = a^{3}x^4+2a^{2}bx^{3}+a^{2} b x^{2}+a b^{2} x^{2}+2 a b^{2} x+b^{3}

Compare the coefficients x 4 x^{4} we get a 3 = 0 a = 0 a^{3} = 0 \rightarrow a = 0 .

Therefore, f ( x ) = c f(x) = c .

By observing, f ( x ) = 1 , 1 \boxed{f(x) = 1, -1} .

There are only 3 \boxed{3} solution available. ~~~

It is not given that the function is a polynomial.

mathh mathh - 6 years, 11 months ago

Log in to reply

I'll try that again though. =..="

Samuraiwarm Tsunayoshi - 6 years, 10 months ago

if one expands f(x+y+z) in each of the three different ways to expand it (associating x and y, associating x and z, or associating y and z). One finds aftering canceling stuff that f(xyz^2)=f(xy^2z)=f(x^2yz). If you think about this for a few seconds it implies f has to be constant because lets say you have somevalue w. given w and a selection of any two nonzero reals x and z one can find a y such that xyz^2=w. And therefore f(w)=f(x^2yz)=f(w*(x/z)) however x/z can be any number we want therefore f(w)=f(c) for any real number c so f is constant. From there it is trivial to see that this constant falue can be 1,-1 or 0

George Friedlander - 6 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...