Functions create confusion

Algebra Level 4

Suppose f ( x ) f(x) is a rational function such that 3 f ( 1 x ) + 2 f ( x ) x = x 2 3 f \left(\dfrac{1}{x} \right) + \dfrac{2 f(x)}{x} = x^2 for x 0 x \not= 0 . Then f ( 2 ) = A \large f(-2) = {A} . Find 100 A \large \left \lfloor {100 A} \right \rfloor , where \lfloor \cdot \rfloor denotes the floor function .


The answer is 335.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Jun 14, 2016

Replace x x by 1 x \dfrac 1x . 3 f ( x ) + 2 x f ( 1 x ) = 1 x 2 3f(x)+2xf\left(\dfrac 1x\right)=\dfrac1{x^2} Now substitute value of f ( 1 x ) f\left(\dfrac 1x\right) from given eqn and rearrange for f ( x ) f(x) to get:

f ( x ) = 3 2 x 5 5 x 2 \Large f(x)=\dfrac{3-2x^5}{5x^2}

100 f ( 2 ) = 100 ( 67 20 ) = 335 \therefore 100f(-2)=100\left(\dfrac{67}{20}\right)=\boxed{335}

Nice solution, did it the exact same way! +1!

Rishabh Tiwari - 5 years ago

Nice and Shorter than mine.

Samara Simha Reddy - 5 years ago
  • Let x = 1 2 \large \displaystyle \text{Let } x = \frac{-1}{2}

3 f ( 2 ) + 2 f ( 1 2 ) ( 1 2 ) = 1 4 \large \displaystyle 3 f(-2) + \frac{2 f \left(\frac{-1}{2} \right)}{\left(\frac{-1}{2} \right)} = \frac{1}{4}

3 f ( 2 ) 4 f ( 1 2 ) = 1 4 . . . . . . . . . . ( 1 ) \large \displaystyle \implies 3 f(-2) - 4 f \left(\frac{-1}{2} \right) = \frac{1}{4} \, .......... \, (1)

  • Let x = 2 \large \displaystyle \text{Let } x = -2

3 f ( 1 2 ) + 2 f ( 2 ) 2 = 4 \large \displaystyle 3 f \left(\frac{-1}{2} \right) + \frac{2 f(-2)}{-2} = 4

3 f ( 1 2 ) f ( 2 ) = 4 . . . . . . . . . . ( 2 ) \large \displaystyle \implies 3 f \left(\frac{-1}{2} \right) - f(-2) = 4 \, .......... \, (2)

By Solving both the equations ( 1 ) (1) and ( 2 ) (2) for f ( 2 ) f(-2) , We get

f ( 2 ) = 67 20 = A \large \displaystyle f(-2) = \frac{67}{20} = \color{#D61F06}{A}

67 20 × 100 = 67 × 5 = 3 3 5 \huge \displaystyle \frac{67}{20} \times 100 = 67 \times 5 = \boxed{\color{#3D99F6}{3} \color{#20A900}{3} \color{#D61F06}{5}}

Thanks @Hung Woei Neoh for correcting my mistake.

Typo: 3 f ( 1 2 ) + 2 f ( 2 ) 2 = 4 3f\left(-\dfrac{1}{2}\right) + \dfrac{2f(-2)}{\color{#3D99F6}{-2}} = 4

Hung Woei Neoh - 5 years ago

Log in to reply

Every time I miss something or the other in my solution. Need to be accurate from next time.

And You are the one who will notify me every time.

Thanks!

Samara Simha Reddy - 5 years ago

Nice solution & nice colouring! +1!

Rishabh Tiwari - 5 years ago

EXCELLENT ....I have done by tha same way :)

Abdullah Ahmed - 5 years ago

Exact same method!!

Yatin Khanna - 5 years ago

Let x = 2 x=-2 , then:

3 f ( 1 2 ) + 2 f ( 2 ) 2 = ( 2 ) 2 3 f ( 1 2 ) f ( 2 ) = 4 3f(-\frac{1}{2}) + 2\frac{f(-2)}{-2}=(-2)^2 \implies \boxed{3f(-\frac{1}{2}) - f(-2) = 4}

Let x = 1 2 x=-\frac{1}{2} , then:

3 f ( 2 ) + 2 f ( 1 2 ) 1 2 = ( 1 2 ) 2 3 f ( 2 ) 4 f ( 1 2 ) = 1 4 3f(-2)+ 2\frac{f(-\frac{1}{2})}{-\frac{1}{2}} = (-\frac{1}{2})^2 \implies \boxed{3f(-2)-4f(-\frac{1}{2})=\frac{1}{4}}

Solving the above pair of equations, we have f ( 2 ) = 67 20 f(-2)=\frac{67}{20} . Now 100 A = 100 × 67 20 = 335 = 335 \lfloor 100A \rfloor = \lfloor 100 \times \frac{67}{20} \rfloor = \lfloor 335 \rfloor = \boxed{335}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...