If f ( x , y ) = ( x + y ) ( x 2 − x y + y 2 ) , find the value of
f ( 1 , 1 3 ) + f ( 6 , 2 ) + f ( 3 , 1 0 ) + f ( 9 , 4 ) + f ( 8 , 5 ) + f ( 1 4 , 7 ) + f ( 1 2 , 1 1 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
f ( x , y ) = ( x + y ) ( x 2 − x y + y 2 ) = x 3 + y 3 f ( 1 , 1 3 ) + f ( 6 , 2 ) + ⋯ + f ( 1 2 , 1 1 ) = 1 3 + 2 3 + ⋯ + 1 4 3 = ( 2 1 4 . 1 5 ) 2 = 1 0 5 2 = 1 1 0 2 5
We can simplify f ( x , y ) = ( x + y ) ( x 2 − x y + y 2 ) into f ( x , y ) = x 3 + y 3 . Let's break down each of the functions now. f ( 1 , 1 3 ) = 1 3 + 1 3 3 , f ( 6 , 2 ) = 6 3 + 2 3 , f ( 3 , 1 0 ) = 3 3 + 1 0 3 , f ( 9 , 4 ) = 9 3 + 4 3 , f ( 8 , 5 ) = 8 3 + 5 3 , f ( 1 4 , 7 ) = 1 4 3 + 7 3 , f ( 1 2 , 1 1 ) = 1 2 3 + 1 1 3 We can see that when we add all of them up we get 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 + 7 3 + 8 3 + 9 3 + 1 0 3 + 1 1 3 + 1 2 3 + 1 3 3 + 1 4 3 We can use the formula that states 1 3 + 2 3 + 3 3 + 4 3 + n 3 = ( 1 + 2 + 3 + 4 + . . . + n ) 2 Therefore the answer is ( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 1 0 + 1 1 + 1 2 + 1 3 + 1 4 ) 2 = 1 0 5 2 = 1 1 0 2 5
Problem Loading...
Note Loading...
Set Loading...
Similar solution as @Ephram Chun 's
We note that f ( x , y ) = ( x + y ) ( x 2 − x y + y 2 ) = x 3 + y 3 and that the sum,
S = f ( ( 1 , 1 3 ) + f ( 6 , 2 ) + f ( 3 , 1 0 ) + f ( 9 , 4 ) + f ( 8 , 5 ) + f ( 1 4 , 7 ) + f ( 1 2 , 1 1 ) = 1 3 + 2 3 + 3 3 + ⋯ + 1 4 3 = n = 1 ∑ 1 4 n 3 = ( n = 1 ∑ 1 4 n ) 2 = ( 2 1 4 ( 1 4 + 1 ) ) 2 = 1 0 5 2 = 1 1 0 2 5