Functions Galore

Algebra Level pending

If f ( x , y ) = ( x + y ) ( x 2 x y + y 2 ) f(x,y)=(x+y)(x^2-xy+y^2) , find the value of

f ( 1 , 13 ) + f ( 6 , 2 ) + f ( 3 , 10 ) + f ( 9 , 4 ) + f ( 8 , 5 ) + f ( 14 , 7 ) + f ( 12 , 11 ) . f(1,13)+f(6,2)+f(3,10)+f(9,4)+f(8,5)+f(14,7)+f(12,11).


The answer is 11025.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Jan 26, 2021

Similar solution as @Ephram Chun 's

We note that f ( x , y ) = ( x + y ) ( x 2 x y + y 2 ) = x 3 + y 3 f(x,y) = (x+y)(x^2 - xy + y^2) = x^3 + y^3 and that the sum,

S = f ( ( 1 , 13 ) + f ( 6 , 2 ) + f ( 3 , 10 ) + f ( 9 , 4 ) + f ( 8 , 5 ) + f ( 14 , 7 ) + f ( 12 , 11 ) = 1 3 + 2 3 + 3 3 + + 1 4 3 = n = 1 14 n 3 = ( n = 1 14 n ) 2 = ( 14 ( 14 + 1 ) 2 ) 2 = 10 5 2 = 11025 \begin{aligned} S & = f((1,13) + f(6,2) + f(3,10) + f(9,4) + f(8,5) + f(14,7) + f(12,11) \\ & = 1^3 + 2^3 + 3^3 + \cdots + 14^3 \\ & = \sum_{n=1}^{14} n^3 = \left(\sum_{n=1}^{14} n \right)^2 = \left(\frac {14(14+1)}2 \right)^2 = 105^2 = \boxed{11025} \end{aligned}

Dwaipayan Shikari
Jan 28, 2021

f ( x , y ) = ( x + y ) ( x 2 x y + y 2 ) = x 3 + y 3 f(x,y)= (x+y)(x^2-xy+y^2)= x^3+y^3 f ( 1 , 13 ) + f ( 6 , 2 ) + + f ( 12 , 11 ) = 1 3 + 2 3 + + 1 4 3 f(1,13)+f(6,2)+\cdots+f(12,11)= 1^3+2^3+\cdots+14^3 = ( 14.15 2 ) 2 = 10 5 2 = 11025 = \left (\dfrac{14.15}{2}\right)^2=105^2=11025

Ephram Chun
Jan 26, 2021

We can simplify f ( x , y ) = ( x + y ) ( x 2 x y + y 2 ) f(x,y)=(x+y)(x^2-xy+y^2) into f ( x , y ) = x 3 + y 3 . f(x,y)=x^3+y^3. Let's break down each of the functions now. f ( 1 , 13 ) = 1 3 + 1 3 3 , f ( 6 , 2 ) = 6 3 + 2 3 , f ( 3 , 10 ) = 3 3 + 1 0 3 , f ( 9 , 4 ) = 9 3 + 4 3 , f ( 8 , 5 ) = 8 3 + 5 3 , f ( 14 , 7 ) = 1 4 3 + 7 3 , f ( 12 , 11 ) = 1 2 3 + 1 1 3 f(1,13)=1^3+13^3, f(6,2)=6^3+2^3, f(3,10)=3^3+10^3, f(9,4)=9^3+4^3, f(8,5)=8^3+5^3, f(14,7)=14^3+7^3, f(12,11)=12^3+11^3 We can see that when we add all of them up we get 1 3 + 2 3 + 3 3 + 4 3 + 5 3 + 6 3 + 7 3 + 8 3 + 9 3 + 1 0 3 + 1 1 3 + 1 2 3 + 1 3 3 + 1 4 3 1^3+2^3+3^3+4^3+5^3+6^3+7^3+8^3+9^3+10^3+11^3+12^3+13^3+14^3 We can use the formula that states 1 3 + 2 3 + 3 3 + 4 3 + n 3 = ( 1 + 2 + 3 + 4 + . . . + n ) 2 1^3+2^3+3^3+4^3+n^3=(1+2+3+4+...+n)^2 Therefore the answer is ( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 ) 2 = 10 5 2 = 11025 (1+2+3+4+5+6+7+8+9+10+11+12+13+14)^2=105^2=\boxed{11025}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...