Obtuse calculation

Geometry Level 2

If tan θ = 4 3 \tan \theta = \frac{4}{3} for π θ 3 2 π \pi \leq \theta \leq \frac{3}{2}\pi , what is the value of sin θ 2 + 2 cos θ 2 5 tan θ 2 ? \sin \frac{\theta}{2} + 2 \cos \frac{\theta}{2} - 5\tan \frac{\theta}{2}?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arron Kau Staff
May 13, 2014

From the identity sec 2 θ = 1 + tan 2 θ \sec^2 \theta = 1 + \tan^2 \theta , we have cos 2 θ = 1 1 + tan 2 θ = 1 1 + ( 4 3 ) 2 = 9 25 \cos^2 \theta = \frac{1}{1 + \tan^2\theta} = \frac{1}{1 + \left(\frac{4}{3}\right)^2} = \frac{9}{25} . Since π < θ < 3 2 π \pi < \theta < \frac{3}{2}\pi , from the CAST rule, we have cos θ = 3 5 \cos \theta = -\frac{3}{5} . From the double angle formula, we have cos θ = 2 cos 2 θ 2 1 = 1 2 sin 2 θ 2 \cos \theta = 2 \cos^2 \frac{\theta}{2} - 1 = 1 - 2\sin^2 \frac{\theta}{2} , thus

sin 2 θ 2 = 1 cos θ 2 = 1 ( 3 5 ) 2 = 4 5 cos 2 θ 2 = 1 + cos θ 2 = 1 + ( 3 5 ) 2 = 1 5 tan 2 θ 2 = 1 cos θ 1 + cos θ = 1 ( 3 5 ) 1 + ( 3 5 ) = 4 \begin{aligned} \sin^2\frac{\theta}{2} &= \frac{1-\cos \theta}{2} = \frac{1 - \left(-\frac{3}{5}\right)}{2} = \frac{4}{5} \\ \cos^2\frac{\theta}{2} &= \frac{1+\cos \theta}{2} = \frac{1 + \left(-\frac{3}{5}\right)}{2} = \frac{1}{5} \\ \tan^2\frac{\theta}{2} &= \frac{1-\cos \theta}{1+\cos \theta} = \frac{1 - \left(-\frac{3}{5}\right)}{1 + \left(-\frac{3}{5}\right)} = 4 \\ \end{aligned}

Since π 2 < θ 2 < 3 4 π \frac{\pi}{2} < \frac{\theta}{2} < \frac{3}{4}\pi , by the CAST rule, we have sin θ 2 > 0 \sin \frac{\theta}{2} > 0 , cos θ 2 < 0 \cos \frac{\theta}{2} < 0 and tan θ 2 < 0 \tan \frac{\theta}{2} < 0 . Thus sin θ 2 = 2 5 \sin \frac{\theta}{2} = \frac{2}{\sqrt{5}} , cos θ 2 = 1 5 \cos \frac{\theta}{2} = - \frac{1}{\sqrt{5}} and tan θ 2 = 2 \tan \frac{\theta}{2} = - 2 .

Hence sin θ 2 + 2 cos θ 2 5 tan θ 2 = 2 5 2 5 5 ( 2 ) = 10 \sin \frac{\theta}{2} + 2 \cos \frac{\theta}{2} - 5\tan \frac{\theta}{2} = \frac{2}{\sqrt{5}} - \frac{2}{\sqrt{5}} -5(-2) = 10 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...