Squared signed sum

Geometry Level 1

What is the value of

sin 2 1 0 + sin 2 2 0 + sin 2 3 0 + sin 2 4 0 + sin 2 5 0 + sin 2 6 0 + sin 2 7 0 + sin 2 8 0 ? \sin ^2 10 ^ \circ + \sin ^2 20 ^ \circ + \sin ^2 30 ^ \circ + \sin ^2 40 ^ \circ + \sin ^2 50 ^ \circ + \sin ^2 60 ^ \circ + \sin ^2 70 ^ \circ + \sin ^2 80 ^ \circ ?

0 1 4 8

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Pedro Ramirez
Dec 21, 2013

Using the identity sin ( x ) = cos ( π 2 x ) \sin(x) = \cos(\frac{\pi} {2} - x) , we rewrite the sum as:

n = 1 4 ( sin 2 ( 10 n ) + cos 2 ( 10 n ) \displaystyle\sum_{n=1}^{4}(\sin^2(10n^{\circ}) + \cos^2(10n^{\circ}) .

Using the pythagorean trigonometric identity , we get that:

n = 1 4 ( sin 2 ( 10 n ) + cos 2 ( 10 n ) = n = 1 4 1 = 4 \displaystyle\sum_{n=1}^{4}(\sin^2(10n^{\circ}) + \cos^2(10n^{\circ}) = \sum_{n=1}^{4}1 = 4 .

Therefore the value of the sum is 4 4 .

Jason Vuong
May 4, 2014

A = sin^2(10)+sin^2(80) = 1 B = sin^2(20)+sin^2(70) = 1 C = sin^2(30)+sin^2(60) = 1 D = sin^2(40)+sin^2(50) = 1 sum(A+B+C+D) = 4

Andre Yudhistika
Jan 4, 2014

remember!

sin^2a+cos^2a=1 therefore sin^2a+sin^2(90-a)=1 (i call it sine couple)

there are 4 sine couples there .

so 4*1=4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...