Practice: Finding the sum of several cosines

Geometry Level 3

What value of N N in the interval [ 0 , 90 ] [0, 90] satisfies the following equation: sin N 2 sin 5 1 2 = cos 1 0 + cos 2 0 + cos 3 0 + cos 4 0 + cos 5 0 + cos 6 0 + cos 7 0 + cos 8 0 ? \begin{aligned} \frac { \sin N ^ \circ } { 2 \sin 5 ^ \circ } - \frac {1}{2} = & \cos 10 ^ \circ + \cos 20 ^ \circ + \cos 30^ \circ + \cos 40 ^ \circ \\ &+ \cos 50 ^ \circ + \cos 60^ \circ + \cos 70 ^ \circ + \cos 80 ^ \circ\, ?\\ \end{aligned}


The answer is 85.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Simplify the equation as we may obtain:

sin N sin 5 = 2 cos 1 0 sin 5 + 2 cos 2 0 sin 5 + 2 cos 3 0 sin 5 + + 2 cos 8 0 sin 5 \displaystyle \sin N^\circ - \sin 5^\circ = 2 \cos 10^\circ \sin 5^\circ + 2 \cos 20^\circ \sin 5^\circ + 2 \cos 30^\circ \sin 5^\circ + \ldots + 2 \cos 80^\circ \sin 5^\circ

From the identity 2 cos A sin B = sin ( A + B ) sin ( A B ) \displaystyle 2 \cos A \sin B = \sin (A+B) - \sin (A-B) we can get:

sin N sin 5 = ( sin 1 5 sin 5 ) + ( sin 2 5 sin 1 5 ) + ( sin 3 5 sin 2 5 ) + + ( sin 8 5 sin 7 5 ) \displaystyle \sin N^\circ - \sin 5^\circ = ( \sin 15^\circ - \sin 5^\circ) + (\sin 25^\circ - \sin 15^\circ) + ( \sin 35^\circ - \sin 25^\circ) + \ldots + (\sin 85^\circ - \sin 75^\circ)

sin N = sin 8 5 \displaystyle \sin N^\circ = \sin 85^\circ

Hence, the answer is N = 85 . \displaystyle \boxed{N =85}.

85 yAH

NAVIN KUMAR MAHADANI - 7 years, 5 months ago

that's the easiest approach!!

SOUVIK PAL - 7 years, 4 months ago
Tianbo Chen
Jan 6, 2014

First change all the expressions in terms of sine instead of cosine using:

sin ( θ ) = cos ( 90 θ ) \sin(\theta) = \cos(90-{\theta})

This gives us: cos 10 + cos 20 + cos 30... + cos 80 = sin 80 + sin 70 + sin 60... + sin 10 = sin 10 + sin 20 + sin 30... + sin 80 \cos10 + \cos20 + \cos30... +\cos 80 = \sin80 + \sin70 + \sin60 ... + \sin10 = \sin10 + \sin20 + \sin30 ... + \sin80

multiply both expressions by 2 sin 5 2 \sin5 . This gives:

sin N sin 5 = 2 sin 1 0 sin 5 + 2 sin 2 0 sin 5 . . . 2 sin 8 0 sin 5 \sin N^{\circ} - \sin5^{\circ} = 2\sin10^{\circ}\sin5^{\circ} + 2\sin20^{\circ}\sin5^{\circ}...2\sin80^{\circ} \sin5^{\circ}

Using: cos ( a b ) cos ( a + b ) = 2 sin a sin b \cos(a-b) - \cos(a+b) = 2 \sin a \sin b

We can simplify the expression to:

( cos 5 cos 15 ) + ( cos 15 cos 25 ) + ( cos 25 cos 30 ) . . . ( cos 75 cos 85 ) = cos 5 cos 85 (\cos5 - \cos15) + (\cos15 -\cos25) + (\cos25 - \cos30) ... (\cos75 - \cos85) = \cos5 - \cos85

Rewriting this in terms of sine gives us:

sin N sin 5 = sin 8 5 sin 5 \sin N^{\circ} - \sin 5^{\circ} = \sin 85^{\circ} - \sin 5^{\circ}

The only solution for N on the interval [0, 90] is N = 85 N = 85

excellent dude , i wasted time by solving all terms

Hari Krishna - 7 years, 4 months ago
Anqi Li
Jan 6, 2014

We shall attempt to derive Lagrange's trigonometric identity, which states that:

n = 1 N cos ( n θ ) = 1 2 + sin ( N + 1 2 ) θ 2 sin ( 1 2 θ ) \sum_{n=1}^N \cos(n \theta) = -\frac{1}{2} + \frac{\sin(N+ \frac{1}{2}) \theta}{2 \sin(\frac{1}{2} \theta)}


Let us first recall that:

1 + z + z 2 + . . . + z n = 1 z n + 1 1 z ( ) 1 + z + z^2 +...+ z^n = \frac{1 - z^{n+1}}{1 - z} (\star) where z 1 z \neq 1 .

Firstly, remark that by setting z = e i θ z = e^{i \theta} (motivated by DeMoivre's Formula ), consider the real part of z k z^k . Thus, n = 1 N cos ( n θ ) \sum_{n=1}^N \cos(n \theta) is the real part of 1 + z + z 2 + + z N 1+ z + z^2 + \ldots + z^N . Thus by \star , we get that the LHS of Lagrange's identity must be the real part of

1 [ cos ( ( n + 1 ) x ) + i sin ( ( n + 1 ) x ] 1 [ cos ( x ) + i sin ( x ) ] \frac{1 - [\cos((n + 1)x) + i \sin((n + 1)x]}{1 - [ \cos(x) + i \sin(x)]}

In order to make the denominator of the above "nicer", we rationalise it. In essence, we multiply it by its complex conjugate:

[ 1 cos ( x ) ] + i sin ( x ) [1 - \cos(x)] + i \sin(x) .

You can verify easily that the denominator is: [ 1 cos ( θ ) ] 2 + sin 2 ( θ ) = 4 sin 2 ( 1 2 θ ) [1 - \cos( \theta )]^2 + \sin^2( \theta) = 4 \sin^2( \frac{1}{2} \theta) and that the real part of the numerator is:

[ 1 cos ( ( n + 1 ) θ ) ] [ 1 cos ( θ ) ] + sin [ ( n + 1 ) θ ] sin ( θ ) = [ 1 cos ( ( n + 1 ) θ ) ] [ 2 sin 2 ( 1 2 θ ) ] + sin [ ( n + 1 ) θ ] [ 2 sin ( 1 2 θ ) cos ( 1 2 θ ) ] [1 - \cos((n + 1) \theta)][1 - \cos( \theta)] + \sin[(n + 1) \theta] \sin( \theta) = [1 - \cos((n + 1) \theta)][2 \sin^2(\frac{1}{2} \theta)] + \sin[(n + 1) \theta][2\sin(\frac{1}{2} \theta) \cos(\frac{1}{2} \theta)]

= 2 sin 2 ( 1 2 θ ) 2 sin ( 1 2 θ ) { cos [ ( n + 1 ) θ ] sin ( 1 2 θ ) sin [ ( n + 1 ) θ ] cos ( 1 2 θ ) } = 2 \sin^2(\frac{1}{2} \theta) - 2 \sin(\frac{1}{2} \theta) \{ \cos[(n + 1) \theta] \sin(\frac{1}{2} \theta) - \sin [(n + 1) \theta ]\cos(\frac{1}{2} \theta) \}

Finally by considering the difference formula, the interested reader may easily verify that when put over the numerator, we indeed get the desired.


By directly applying the identity mentioned at the beginning, we can conclude that the RHS = sin ( 85 ° ) 2 sin ( 5 ° ) 1 2 = \frac{\sin(85°)}{2 \sin(5°)} - \frac{1}{2} , thus our answer is N = 85 N = \fbox{85} .

awwsme soln

Arya Singh - 7 years, 5 months ago

nice solution . :D

Adi Pratama - 7 years, 4 months ago

To use complex numbers to simplify: z k 1 z 1 = e i k θ 2 ( e i k θ 2 e i k θ 2 ) e i θ 2 ( e i θ 2 e i θ 2 ) = sin k θ 2 sin θ 2 e i ( k 1 ) θ 2 \frac{z^{k}-1}{z-1} = \frac{e^{ik\frac{\theta}{2}} ( e^{ik\frac{\theta}{2}}-e^{-ik\frac{\theta}{2}})}{e^{i\frac{\theta}{2}} ( e^{i\frac{\theta}{2}}-e^{-i\frac{\theta}{2}})} = \frac{\sin{k\frac{\theta}{2}}}{\sin{\frac{\theta}{2}}} e^{i(k-1)\frac{\theta}{2}} then compare the real (or imaginary) part.

George G - 7 years, 4 months ago
Pebrudal Zanu
Jan 6, 2014

sin N sin 5 = sin 1 5 sin 5 + sin 2 5 sin 1 5 + . . . . + sin 8 5 sin 7 5 \sin N^{\circ}-\sin 5^{\circ}=\sin 15^{\circ}-\sin 5^{\circ}+\sin 25^{\circ}-\sin 15^{\circ}+....+\sin 85^{\circ}-\sin 75^{\circ}

sin N = sin 8 5 \sin N^{\circ}=\sin 85^{\circ}

N = 85 N=\fbox{85}

Very clear.

A Brilliant Member - 7 years, 5 months ago
Herbert Caburnay
Jan 21, 2014

N=COS(10+20+30+40+50+60+70+80)+0.50 X 5SIN5 N=85

could you elaborate this ??

আল-আমিন বাদল - 7 years, 4 months ago

Log in to reply

he has used a calculator to do it :P

Nishant Kumar - 7 years, 3 months ago
Shamik Banerjee
Jan 6, 2014

Using Lagrange's trigonometric identities (http://en.wikipedia.org/wiki/Lagrange%27s trigonometric identities#Lagrange.27s trigonometric identities), we get the R.H.S. = - (1/2) + [sin(85°)/{2*sin(5°)}]. Therefore, N = 85.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...