What value of N in the interval [ 0 , 9 0 ] satisfies the following equation: 2 sin 5 ∘ sin N ∘ − 2 1 = cos 1 0 ∘ + cos 2 0 ∘ + cos 3 0 ∘ + cos 4 0 ∘ + cos 5 0 ∘ + cos 6 0 ∘ + cos 7 0 ∘ + cos 8 0 ∘ ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
85 yAH
that's the easiest approach!!
First change all the expressions in terms of sine instead of cosine using:
sin ( θ ) = cos ( 9 0 − θ )
This gives us: cos 1 0 + cos 2 0 + cos 3 0 . . . + cos 8 0 = sin 8 0 + sin 7 0 + sin 6 0 . . . + sin 1 0 = sin 1 0 + sin 2 0 + sin 3 0 . . . + sin 8 0
multiply both expressions by 2 sin 5 . This gives:
sin N ∘ − sin 5 ∘ = 2 sin 1 0 ∘ sin 5 ∘ + 2 sin 2 0 ∘ sin 5 ∘ . . . 2 sin 8 0 ∘ sin 5 ∘
Using: cos ( a − b ) − cos ( a + b ) = 2 sin a sin b
We can simplify the expression to:
( cos 5 − cos 1 5 ) + ( cos 1 5 − cos 2 5 ) + ( cos 2 5 − cos 3 0 ) . . . ( cos 7 5 − cos 8 5 ) = cos 5 − cos 8 5
Rewriting this in terms of sine gives us:
sin N ∘ − sin 5 ∘ = sin 8 5 ∘ − sin 5 ∘
The only solution for N on the interval [0, 90] is N = 8 5
excellent dude , i wasted time by solving all terms
We shall attempt to derive Lagrange's trigonometric identity, which states that:
∑ n = 1 N cos ( n θ ) = − 2 1 + 2 sin ( 2 1 θ ) sin ( N + 2 1 ) θ
Let us first recall that:
1 + z + z 2 + . . . + z n = 1 − z 1 − z n + 1 ( ⋆ ) where z = 1 .
Firstly, remark that by setting z = e i θ (motivated by DeMoivre's Formula ), consider the real part of z k . Thus, ∑ n = 1 N cos ( n θ ) is the real part of 1 + z + z 2 + … + z N . Thus by ⋆ , we get that the LHS of Lagrange's identity must be the real part of
1 − [ cos ( x ) + i sin ( x ) ] 1 − [ cos ( ( n + 1 ) x ) + i sin ( ( n + 1 ) x ]
In order to make the denominator of the above "nicer", we rationalise it. In essence, we multiply it by its complex conjugate:
[ 1 − cos ( x ) ] + i sin ( x ) .
You can verify easily that the denominator is: [ 1 − cos ( θ ) ] 2 + sin 2 ( θ ) = 4 sin 2 ( 2 1 θ ) and that the real part of the numerator is:
[ 1 − cos ( ( n + 1 ) θ ) ] [ 1 − cos ( θ ) ] + sin [ ( n + 1 ) θ ] sin ( θ ) = [ 1 − cos ( ( n + 1 ) θ ) ] [ 2 sin 2 ( 2 1 θ ) ] + sin [ ( n + 1 ) θ ] [ 2 sin ( 2 1 θ ) cos ( 2 1 θ ) ]
= 2 sin 2 ( 2 1 θ ) − 2 sin ( 2 1 θ ) { cos [ ( n + 1 ) θ ] sin ( 2 1 θ ) − sin [ ( n + 1 ) θ ] cos ( 2 1 θ ) }
Finally by considering the difference formula, the interested reader may easily verify that when put over the numerator, we indeed get the desired.
By directly applying the identity mentioned at the beginning, we can conclude that the RHS = 2 sin ( 5 ° ) sin ( 8 5 ° ) − 2 1 , thus our answer is N = 8 5 .
awwsme soln
nice solution . :D
To use complex numbers to simplify: z − 1 z k − 1 = e i 2 θ ( e i 2 θ − e − i 2 θ ) e i k 2 θ ( e i k 2 θ − e − i k 2 θ ) = sin 2 θ sin k 2 θ e i ( k − 1 ) 2 θ then compare the real (or imaginary) part.
sin N ∘ − sin 5 ∘ = sin 1 5 ∘ − sin 5 ∘ + sin 2 5 ∘ − sin 1 5 ∘ + . . . . + sin 8 5 ∘ − sin 7 5 ∘
sin N ∘ = sin 8 5 ∘
N = 8 5
Very clear.
N=COS(10+20+30+40+50+60+70+80)+0.50 X 5SIN5 N=85
could you elaborate this ??
Using Lagrange's trigonometric identities (http://en.wikipedia.org/wiki/Lagrange%27s trigonometric identities#Lagrange.27s trigonometric identities), we get the R.H.S. = - (1/2) + [sin(85°)/{2*sin(5°)}]. Therefore, N = 85.
Problem Loading...
Note Loading...
Set Loading...
Simplify the equation as we may obtain:
sin N ∘ − sin 5 ∘ = 2 cos 1 0 ∘ sin 5 ∘ + 2 cos 2 0 ∘ sin 5 ∘ + 2 cos 3 0 ∘ sin 5 ∘ + … + 2 cos 8 0 ∘ sin 5 ∘
From the identity 2 cos A sin B = sin ( A + B ) − sin ( A − B ) we can get:
sin N ∘ − sin 5 ∘ = ( sin 1 5 ∘ − sin 5 ∘ ) + ( sin 2 5 ∘ − sin 1 5 ∘ ) + ( sin 3 5 ∘ − sin 2 5 ∘ ) + … + ( sin 8 5 ∘ − sin 7 5 ∘ )
sin N ∘ = sin 8 5 ∘
Hence, the answer is N = 8 5 .