Functions, RMO

Algebra Level 3

Let X \mathbb X be the set of all positive integers 8 \ge 8 and let f : X X f: \mathbb {X \to X} be a function such that f ( x + y ) = f ( x y ) f(x+y)=f(xy) for all x 4 x\ge 4 and y 4 y\ge 4 . If f ( 8 ) = 9 f(8)=9 , find f ( 9 ) f(9) .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 24, 2018

It is given that f ( x + y ) = f ( x y ) {\color{#3D99F6}f(x+y)} = {\color{#D61F06}f(xy)} and that f ( 8 ) = 9 \boxed{f(8)}=\boxed 9 . Then

4 + 4 = 8 , 4 × 4 = 16 f ( 8 ) = f ( 16 ) = 9 8 + 8 = 16 , 8 × 8 = 64 f ( 16 ) = f ( 64 ) = 9 4 + 16 = 20 , 4 × 16 = 64 f ( 20 ) = f ( 64 ) = 9 4 + 5 = 9 , 4 × 5 = 20 f ( 9 ) = f ( 20 ) = 9 \begin{array} {rrc} {\color{#3D99F6}4+4=8}, & \color{#D61F06}4\times 4=16 & \implies {\color{#3D99F6}\boxed{f(8)}} = {\color{#D61F06}f(16)} = \boxed 9 \\ {\color{#3D99F6}8+8=16}, & \color{#D61F06}8\times 8=64 & \implies {\color{#3D99F6}\boxed{f(16)}} = {\color{#D61F06}f(64)} = \boxed 9 \\ {\color{#3D99F6}4+16=20}, & \color{#D61F06}4\times 16=64 & \implies {\color{#3D99F6}f(20)} = {\color{#D61F06}\boxed{f(64)}} = \boxed 9 \\ {\color{#3D99F6}4+5=9}, & \color{#D61F06}4\times 5=20 & \implies {\color{#3D99F6}f(9)} = {\color{#D61F06}\boxed{f(20)}} = \boxed 9 \end{array}

Therefore, f ( 9 ) = 9 f(9) = \boxed 9 .

Sambit Mishra
Jun 22, 2018

Here, f(x+y)=f(xy) For, x=y=4, f(4+4)=f(4.4) =>f(8)=f(16)=9 now, f(9)=f(4+5) =f(4.5) =f(20) =f(16 + 4) =f(16.4) =f(8.8) =f(8+8) =f(16)=9 therefore, f(9)=9. For more or for sending problems contact me at: sambit.mishra.2003@gmail.com

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...