cos − 1 ( 1 + x 2 1 − x 2 ) = 2 π − 2 sin − 1 ( 1 + x 2 2 x )
If the sum of squares of solutions of the equation above is λ , what is λ − 8 ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
cos − 1 ( 1 + x 2 1 − x 2 ) = 2 π − 2 sin − 1 ( 1 + x 2 2 x ) … (given)
1 + x 2 1 − x 2 = cos ( 2 π − 2 sin − 1 ( 1 + x 2 2 x ) ) … ( cos − 1 y = x ⟹ y = cos x )
1 + x 2 1 − x 2 = sin ( 2 sin − 1 ( 1 + x 2 2 x ) ) … ( cos ( 2 π − x ) = sin x )
1 + x 2 1 − x 2 = 2 sin ( sin − 1 ( 1 + x 2 2 x ) ) cos ( sin − 1 ( 1 + x 2 2 x ) ) … ( sin ( 2 x ) = 2 sin x cos x )
1 + x 2 1 − x 2 = 2 ⋅ 1 + x 2 2 x ⋅ 1 + x 2 ( 1 + x 2 ) 2 − ( 2 x ) 2 … ( sin − 1 ( sin x ) = x , sin − 1 ( cos c b ) = c c 2 − b 2 )
1 + x 2 1 − x 2 = 2 ⋅ 1 + x 2 2 x ⋅ 1 + x 2 1 − x 2 … (difference of squares, simplify)
1 = 2 ⋅ 1 + x 2 2 x , x = ± 1 … (divide by 1 + x 2 1 − x 2 )
x 2 − 4 x + 1 = 0 , x = ± 1 … (rearrange)
x = 2 ± 3 … (quadratic equation)
Therefore, λ − 8 = ( 2 + 3 ) 2 + ( 2 − 3 ) 2 − 8 = 1 4 − 8 = 6 .
Problem Loading...
Note Loading...
Set Loading...
Note that if tan 2 θ = x , then by half-angle tangent substitution we have:
cos − 1 ( 1 + x 2 1 − x 2 ) θ ⟹ θ sin − 1 ( 1 + x 2 2 x ) 1 + x 2 2 x x 2 − 4 x + 1 ⟹ x = 2 π − 2 sin − 1 ( 1 + x 2 2 x ) = 2 π − 2 θ = 6 π = 6 π = 2 1 = 0 = 2 ± 3
⟹ λ λ − 8 = ( 2 + 3 ) 2 + ( 2 − 3 ) 2 = 1 4 = 1 4 − 8 = 6