Functions#12

Geometry Level 4

cos 1 ( 1 x 2 1 + x 2 ) = π 2 2 sin 1 ( 2 x 1 + x 2 ) \large \cos^{-1} \left(\frac {1-x^2}{1+x^2} \right) = \frac \pi 2 - 2 \sin^{-1} \left(\frac {2x}{1+x^2} \right)

If the sum of squares of solutions of the equation above is λ \lambda , what is λ 8 \lambda - 8 ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 21, 2018

Note that if tan θ 2 = x \tan \frac \theta 2 = x , then by half-angle tangent substitution we have:

cos 1 ( 1 x 2 1 + x 2 ) = π 2 2 sin 1 ( 2 x 1 + x 2 ) θ = π 2 2 θ θ = π 6 sin 1 ( 2 x 1 + x 2 ) = π 6 2 x 1 + x 2 = 1 2 x 2 4 x + 1 = 0 x = 2 ± 3 \begin{aligned} \cos^{-1} \left(\frac {1-x^2}{1+x^2}\right) & = \frac \pi 2 - 2 \sin^{-1} \left(\frac {2x}{1+x^2}\right) \\ \theta & = \frac \pi 2 - 2\theta \\ \implies \theta & = \frac \pi 6 \\ \sin^{-1} \left(\frac {2x}{1+x^2}\right) & = \frac \pi 6 \\ \frac {2x}{1+x^2} & = \frac 12 \\ x^2 - 4x + 1 & = 0 \\ \implies x & = 2 \pm \sqrt 3 \end{aligned}

λ = ( 2 + 3 ) 2 + ( 2 3 ) 2 = 14 λ 8 = 14 8 = 6 \begin{aligned} \implies \lambda & = (2+\sqrt 3)^2 + (2-\sqrt 3)^2 = 14 \\ \lambda - 8 & = 14-8 = \boxed{6}\end{aligned}

David Vreken
Feb 22, 2018

cos 1 ( 1 x 2 1 + x 2 ) = π 2 2 sin 1 ( 2 x 1 + x 2 ) \cos^{-1}(\frac{1 - x^2}{1 + x^2}) = \frac{\pi}{2} - 2\sin^{-1}(\frac{2x}{1 + x^2}) \ldots (given)

1 x 2 1 + x 2 = cos ( π 2 2 sin 1 ( 2 x 1 + x 2 ) ) \frac{1 - x^2}{1 + x^2} = \cos(\frac{\pi}{2} - 2\sin^{-1}(\frac{2x}{1 + x^2})) \ldots ( cos 1 y = x y = cos x \cos^{-1}y = x \implies y = \cos x )

1 x 2 1 + x 2 = sin ( 2 sin 1 ( 2 x 1 + x 2 ) ) \frac{1 - x^2}{1 + x^2} = \sin(2\sin^{-1}(\frac{2x}{1 + x^2})) \ldots ( cos ( π 2 x ) = sin x \cos(\frac{\pi}{2} - x) = \sin x )

1 x 2 1 + x 2 = 2 sin ( sin 1 ( 2 x 1 + x 2 ) ) cos ( sin 1 ( 2 x 1 + x 2 ) ) \frac{1 - x^2}{1 + x^2} = 2 \sin(\sin^{-1}(\frac{2x}{1 + x^2})) \cos(\sin^{-1}(\frac{2x}{1 + x^2})) \ldots ( sin ( 2 x ) = 2 sin x cos x \sin(2x) = 2 \sin x \cos x )

1 x 2 1 + x 2 = 2 2 x 1 + x 2 ( 1 + x 2 ) 2 ( 2 x ) 2 1 + x 2 \frac{1 - x^2}{1 + x^2} = 2 \cdot \frac{2x}{1 + x^2} \cdot \frac{\sqrt{(1 + x^2)^2 - (2x)^2}}{1 + x^2} \ldots ( sin 1 ( sin x ) = x \sin^{-1}(\sin x) = x , sin 1 ( cos b c ) = c 2 b 2 c \sin^{-1}(\cos \frac{b}{c}) = \frac{\sqrt{c^2 - b^2}}{c} )

1 x 2 1 + x 2 = 2 2 x 1 + x 2 1 x 2 1 + x 2 \frac{1 - x^2}{1 + x^2} = 2 \cdot \frac{2x}{1 + x^2} \cdot \frac{1 - x^2}{1 + x^2} \ldots (difference of squares, simplify)

1 = 2 2 x 1 + x 2 1 = 2 \cdot \frac{2x}{1 + x^2} , x ± 1 x \neq \pm 1 \ldots (divide by 1 x 2 1 + x 2 \frac{1 - x^2}{1 + x^2} )

x 2 4 x + 1 = 0 x^2 - 4x + 1 = 0 , x ± 1 x \neq \pm 1 \ldots (rearrange)

x = 2 ± 3 x = 2 \pm \sqrt{3} \ldots (quadratic equation)

Therefore, λ 8 = ( 2 + 3 ) 2 + ( 2 3 ) 2 8 = 14 8 = 6 \lambda - 8 = (2 + \sqrt{3})^2 + (2 - \sqrt{3})^2 - 8 = 14 - 8 = \boxed{6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...