Functions, anyone?

Algebra Level 4

f : R R f:\mathbb{R} \rightarrow \mathbb{R}

( x y ) × f ( x + y ) ( x + y ) × f ( x y ) = 4 x y ( x 2 y 2 ) \displaystyle(x-y)\times f(x+y)-(x+y)\times f(x-y)=4xy(x^2-y^2)

If f ( 1 ) = 2 \displaystyle f(1)=2 , find f ( 32 ) \displaystyle f(32) .


The answer is 32800.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Shaun Leong
Jun 2, 2016

Let a = x y a=x-y and b = x + y b=x+y .

Thus x = b + a 2 , y = b a 2 x=\frac{b+a}{2},y=\frac{b-a}{2} a f ( b ) b f ( a ) = 4 ( b + a 2 ) ( b a 2 ) a b af(b)-bf(a)=4(\frac{b+a}{2})(\frac{b-a}{2})ab a f ( b ) b f ( a ) = ( b + a ) ( b a ) a b af(b)-bf(a)=(b+a)(b-a)ab

Divide by both sides by a b ab : f ( b ) b f ( a ) a = b 2 a 2 \frac{f(b)}{b}-\frac{f(a)}{a}=b^2-a^2

Let g ( x ) = f ( x ) x g(x)=\frac{f(x)}{x} : g ( b ) g ( a ) = b 2 a 2 g(b)-g(a)=b^2-a^2 g ( b ) b 2 = g ( a ) a 2 g(b)-b^2=g(a)-a^2

Using g ( 1 ) = f ( 1 ) 1 = 2 g(1)=\frac{f(1)}{1}=2 , let a = 1 a=1 and b = x b=x : g ( x ) x 2 = 2 1 2 g(x)-x^2=2-1^2 g ( x ) = x 2 + 1 g(x)=x^2+1 f ( x ) = x g ( x ) = x 3 + x f(x)=x*g(x)=x^3+x

Hence f ( x ) = 32800 f(x)=\boxed{32800}

This can be generalized to show that all solutions of the functional equation are in the form f ( x ) = x 3 + c x f(x) = x^3 + cx for some constant c c . The condition f ( 1 ) = 2 f(1) = 2 just fixes c c .

Ivan Koswara - 5 years ago
Abhishek Sinha
Jun 2, 2016

Substitute x = 16.5 , y = 15.5 x=16.5, y=15.5 in the given functional relation to obtain f ( 32 ) = 32 f ( 1 ) + 4 × 16.5 × 15.5 × ( 16. 5 2 15. 5 2 ) f(32)=32 f(1) + 4\times 16.5 \times 15.5 \times (16.5^2-15.5^2) which gives f ( 32 ) = 32800 f(32)=32800 .

Great thought sir,+1!

Rishabh Tiwari - 5 years ago
Rohit Ner
Jun 2, 2016

Input x = y + 1 x=y+1

f ( 2 y + 1 ) 2 ( 2 y + 1 ) = 4 y ( y + 1 ) ( 2 y + 1 ) f ( 2 y + 1 ) = ( 2 y + 1 ) ( 4 y 2 + 4 y + 2 ) = ( 2 y + 1 ) ( ( 2 y + 1 ) 2 + 1 ) \begin{aligned}f(2y+1)-2(2y+1)&=4y(y+1)(2y+1)\\f(2y+1)&=(2y+1)(4{y}^2+4y+2)\\&=(2y+1)\left({(2y+1)}^2+1\right)\end{aligned}

Input 2 y + 1 = x 2y+1=x

f ( x ) = x ( x 2 + 1 ) f ( 32 ) = 32 ( 1024 + 1 ) = 32800 \begin{aligned} f(x)&=x\left({x}^2+1\right)\\f(32)&=32(1024+1)\\&\huge\color{#3D99F6}{=\boxed{32800}}\end{aligned}

Nice solution.

Saarthak Marathe - 5 years ago

Log in to reply

Nice question.

Aditya Chauhan - 5 years ago

Log in to reply

Thank you.

Saarthak Marathe - 5 years ago

Very nice question.!

Rishabh Tiwari - 5 years ago

hey @Saarthak Marathe very nice question .. enjoy solving it ,

Rudraksh Sisodia - 4 years, 9 months ago

Log in to reply

Thanks man

Saarthak Marathe - 4 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...