Fundamental Drill#4

Given that x x is an integer which satisfies the set of constraints below:

{ x 0 x + 1009 2018 ( 2018 x ) ( 2018 x + 1009 ) \begin{cases} x\geq0 \\ x+1009\leq2018 \\ \dbinom{2018}{x}\geq \dbinom{2018}{x+1009} \end{cases}

Find the number of possible values for x x .

You can try more of my fundamental problems here .

2018 505 1010 1009 504

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 20, 2018

From the first two constraints, we have 0 x 1009 0\le x \le 1009 . Then ( 2018 x ) ( 2018 x + 1009 ) = ( 2018 2018 ( x + 1009 ) ) = ( 2018 1009 x ) \dbinom {2018}x \ge \dbinom {2018}{x+1009} = \dbinom {2018}{2018-(x+1009)} = \dbinom {2018}{1009-x}

For 0 x 1009 0 \le x \le 1009 , ( 2018 x ) ( 2018 1009 x ) \dbinom {2018}{\color{#3D99F6}x} \ge \dbinom {2018}{\color{#3D99F6}1009-x} if x 1009 x \color{#3D99F6}x \ge 1009-x , 2 x 1009 \implies 2x \ge 1009 , x 505 \implies x \ge 505 . Therefore, 505 x 1009 505 \le x \le 1009 , altogether 505 \boxed{505} possible values.

Donglin Loo
Jun 20, 2018

{ x 0 x + 1009 2018 ( 2018 x ) ( 2018 x + 1009 ) \begin{cases} x\geq0 \\ x+1009\leq2018 \\ \binom{2018}{x}\geq \binom{2018}{x+1009} \end{cases}

The first two inequalities give us 0 x 1009 0\leq x\leq1009

( 2018 x + 1009 ) = ( 2018 1009 x ) \binom{2018}{x+1009}=\binom{2018}{1009-x}

See the proof here .

( 2018 x ) ( 2018 1009 x ) \Rightarrow \binom{2018}{x}\geq \binom{2018}{1009-x}

When x = 0 x=0 , ( 2018 x ) = ( 2018 0 ) , ( 2018 1009 x ) = ( 2018 1009 ) \binom{2018}{x}=\binom{2018}{0}, \binom{2018}{1009-x}=\binom{2018}{1009}

When x = 1 x=1 , ( 2018 x ) = ( 2018 1 ) , ( 2018 1009 x ) = ( 2018 1008 ) \binom{2018}{x}=\binom{2018}{1}, \binom{2018}{1009-x}=\binom{2018}{1008}

When x = 2 x=2 , ( 2018 x ) = ( 2018 2 ) , ( 2018 1009 x ) = ( 2018 1007 ) \binom{2018}{x}=\binom{2018}{2}, \binom{2018}{1009-x}=\binom{2018}{1007}

...

When x = 504 x=504 , ( 2018 x ) = ( 2018 504 ) , ( 2018 1009 x ) = ( 2018 505 ) \binom{2018}{x}=\binom{2018}{504}, \binom{2018}{1009-x}=\binom{2018}{505}

When x = 505 x=505 , ( 2018 x ) = ( 2018 505 ) , ( 2018 1009 x ) = ( 2018 504 ) \binom{2018}{x}=\binom{2018}{505}, \binom{2018}{1009-x}=\binom{2018}{504}

...

When x = 1007 x=1007 , ( 2018 x ) = ( 2018 1007 ) , ( 2018 1009 x ) = ( 2018 2 ) \binom{2018}{x}=\binom{2018}{1007}, \binom{2018}{1009-x}=\binom{2018}{2}

When x = 1008 x=1008 , ( 2018 x ) = ( 2018 1008 ) , ( 2018 1009 x ) = ( 2018 1 ) \binom{2018}{x}=\binom{2018}{1008}, \binom{2018}{1009-x}=\binom{2018}{1}

When x = 1009 x=1009 , ( 2018 x ) = ( 2018 1009 ) , ( 2018 1009 x ) = ( 2018 0 ) \binom{2018}{x}=\binom{2018}{1009}, \binom{2018}{1009-x}=\binom{2018}{0}

Notice that the values of both sides are interchanged throughout the process of substituting values.

From x = 0 x=0 to x = 1009 x=1009 , there are a total of 1009 + 1 = 1010 1009+1=1010 values

\therefore the number of possible values for x = 1010 2 = 505 x=\cfrac{1010}{2}=\boxed{505} ,

which starts from x = 505 x=505 all the way to x = 1009 x=1009

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...