Fundamental theorem of integral calculus

Calculus Level 3

y = 1 x t 2 t 2 + 4 d t 3 x t 2 t 2 + 4 d t \large y=\int_{-1}^{x}\frac{t^2}{t^2+4}\,dt-\int_{3}^{x}\frac{t^2}{t^2+4}\,dt If y = f ( x ) y=f(x) , then find f ( x ) f'(x) .


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 22, 2017

y = 1 x t 2 t 2 + 4 d t 3 x t 2 t 2 + 4 d t = 1 3 t 2 t 2 + 4 d t = c where c is a constant. \begin{aligned} y & = \int_{-1}^x \frac {t^2}{t^2+4} dt - \int_{3}^x \frac {t^2}{t^2+4} dt \\ & = \int_{-1}^3 \frac {t^2}{t^2+4} dt = \color{#3D99F6}c \quad \small \text{where }c \text{ is a constant.} \end{aligned}

f ( x ) = c f ( x ) = 0 \begin{aligned} \implies f(x) & = c \\ f'(x) & = \boxed{0} \end{aligned}

But still wondering: what is the primitive of t 2 t 2 + 4 \frac{t^2}{t^2+4} ?

Peter van der Linden - 4 years, 2 months ago

Log in to reply

t 2 t 2 + 4 d t = ( t 2 ) 2 1 + ( t 2 ) 2 d t = 2 u 2 1 + u 2 d u where u = t 2 d t 2 = d u = 2 tan 2 θ d θ where θ = arctan ( u ) u = tan θ d u = sec 2 θ d θ = 2 ( sec 2 θ 1 ) d θ = 2 ( tan θ θ ) + C = 2 ( u arctan ( u ) ) + C = 2 [ t 2 arctan ( t 2 ) ] + C = t 2 arctan ( t 2 ) + C \begin{aligned} \displaystyle \int \dfrac{t^2}{t^2+4} \,dt &= \int \dfrac{{\left( \frac t2 \right)}^2}{1+{\left( \frac t2 \right)}^2} \,dt \\ &= 2 \int \dfrac{u^2}{1+u^2} \,du & \small \text{where } u = \dfrac t2 \implies \dfrac{dt}{2} = du \\ &= 2 \int \tan^2 \theta \,d\theta & \small \text{where } \theta = \arctan (u) \implies u = \tan \theta \implies du = \sec^2 \theta \,d\theta \\ &= 2 \int (\sec^2 \theta - 1 ) \,d\theta \\ &= 2 ( \tan \theta - \theta ) + C \\ &= 2 ( u - \arctan (u) ) + C \\ &= 2 \left[ \dfrac t2 - \arctan \left( \dfrac t2 \right) \right] + C \\ &= \boxed{t - 2 \arctan \left( \dfrac t2 \right) + C} \end{aligned}

Tapas Mazumdar - 4 years, 2 months ago

Log in to reply

Tnx. I knew it was a trigonometric function, but didn't know which 1 . by heart anymore.

Peter van der Linden - 4 years, 2 months ago

it's t-2arctan(t/2)

Anthony Holm - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...