Evaluate the infinite series
S = k = 0 ∑ ∞ k ! ( lo g 2 0 1 7 2 0 1 6 ) k ( − 1 ) k ( lo g 2 0 1 7 2 0 1 8 ) k
If ln ( S ) = − lo g a ( b ) , where a and b are integers, find the smallest possible average of a and b .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
When you say "smallest possible average", keep in mind there are different averages ( R . M . S ≥ A . M ≥ G . M ≥ H . M ) . Hence be more specific.
S = k = 0 ∑ ∞ k ! ( lo g 2 0 1 7 2 0 1 6 ) k ( − 1 ) k ( lo g 2 0 1 7 2 0 1 8 ) k = k = 0 ∑ ∞ k ! ( − 1 ) k x k = e − x = exp ( − lo g 2 0 1 7 2 0 1 6 lo g 2 0 1 7 2 0 1 8 ) = exp ( − ln 2 0 1 7 ln 2 0 1 6 ln 2 0 1 7 ln 2 0 1 8 ) = exp ( − ln 2 0 1 6 ln 2 0 1 8 ) Let x = lo g 2 0 1 7 2 0 1 6 lo g 2 0 1 7 2 0 1 8
⟹ ln S = − ln 2 0 1 6 ln 2 0 1 8 = − lo g 2 0 1 6 2 0 1 8
Therefore, the average of a and b is 2 a + b = 2 2 0 1 6 + 2 0 1 8 = 2 0 1 7
Problem Loading...
Note Loading...
Set Loading...
S = k = 0 ∑ ∞ k ! ( lo g 2 0 1 7 2 0 1 6 ) k ( − 1 ) k ( lo g 2 0 1 7 2 0 1 8 ) k
= k = 0 ∑ ∞ ( lo g 2 0 1 7 2 0 1 6 − 1 ⋅ lo g 2 0 1 7 2 0 1 8 ) k ⋅ k ! 1
= k = 0 ∑ ∞ ( lo g 2 0 1 7 2 0 1 6 lo g 2 0 1 7 ( 2 0 1 8 1 ) ) k ⋅ k ! 1
Using the reverse change-of-base formula, we can rewrite what's inside the parentheses:
= k = 0 ∑ ∞ ( lo g 2 0 1 6 ( 2 0 1 8 1 ) ) k ⋅ k ! 1
If we plug in x = lo g 2 0 1 6 ( 2 0 1 8 1 ) into the series, we have the series of the form k = 0 ∑ ∞ k ! x k = e x for all real x .
Therefore, S = e x = e lo g 2 0 1 6 ( 2 0 1 8 1 ) ⟹ ln S = lo g 2 0 1 6 ( 2 0 1 8 1 ) = − lo g 2 0 1 6 ( 2 0 1 8 ) .
Thus, a = 2 0 1 6 , b = 2 0 1 8 ⟹ 2 a + b = 2 0 1 7 .