Find the value of
cos 6 7 5 ∘ + sin 6 7 5 ∘ + 4 sin 2 7 5 ∘ cos 2 7 5 ∘ cos 4 7 5 ∘ + sin 4 7 5 ∘ + 3 sin 2 7 5 ∘ cos 2 7 5 ∘ .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Actually we can prove that the numerator is equal to denominator for any degrees, not just 75.
It's easy to prove that sin 4 x + cos 4 x = sin 6 x + cos 6 x + sin 2 x cos 2 x , and we just add 3 sin 2 x cos 2 x to both sides. And we're done!
Let us start with the denominator:
cos 6 7 5 ∘ + sin 6 7 5 o + 4 sin 2 7 5 o cos 2 7 5 o
= ( cos 2 7 5 o + sin 2 7 5 o ) ( cos 4 7 5 o + sin 4 7 5 o ) − sin 2 7 5 o cos 4 7 5 o − sin 4 7 5 o cos 2 7 5 o + 4 sin 2 7 5 o cos 2 7 5 o
= ( 1 ) ( cos 4 7 5 o + sin 4 7 5 o ) − sin 2 7 5 o cos 2 7 5 o ( sin 2 7 5 o + cos 2 7 5 o ) + 4 sin 2 7 5 o cos 2 7 5 o
= cos 4 7 5 o + sin 4 7 5 o − sin 2 7 5 o cos 2 7 5 o ( 1 ) + 4 sin 2 7 5 o cos 2 7 5 o
= cos 4 7 5 o + sin 4 7 5 o + 3 sin 2 7 5 o cos 2 7 5 o = numerator
Therefore,
cos 6 7 5 o + sin 6 7 5 o + 4 sin 2 7 5 o cos 2 7 5 o cos 4 7 5 o + sin 4 7 5 o + 3 sin 2 7 5 o cos 2 7 5 o
= cos 4 7 5 o + sin 4 7 5 o + 3 sin 2 7 5 o cos 2 7 5 o cos 4 7 5 o + sin 4 7 5 o + 3 sin 2 7 5 o cos 2 7 5 o = 1
for sin use formula sin(A+B)=sinA.cosB + cosA.sinB n for cos use formula cos(A+B)=cosA.cosB - sinA.sinB
Is it nominator or numerator?😅
That was simple the numerator and denominator simplifies to the same expression by basic algebra.... I mean there is no need of product to sum formula just take the numerator as 1+sin^2 (75) cos^2 (75) by ( a + b ) 2 Similarly for denominator use ( a + b ) 3 formula where a and b are sin^2 (75) and cos ^2 (75)...sorry I am working on phone so I found formatting complicated....
Let a = cos 2 7 5 ∘ and b = sin 2 7 5 ∘ . Then the expression is of the form a 3 + b 3 + 4 a b a 2 + b 2 + 3 a b . Applying the sum of cubes factorization to the first two terms in the denominator, we have ( a + b ) ( a 2 − a b + b 2 ) + 4 a b a 2 + b 2 + 3 a b . But since sin 2 x + cos 2 x = 1 for any x , the ( a + b ) factor disappears, and we find a 2 + b 2 − a b + 4 a b a 2 + b 2 + 3 a b = 1 .
Using algebra identity Cos^2 75 = a Sin^2 75 = b.... (a+b)^2 = a^2 + b^2 + 2ab ....... Then, cos^4 75 + sin^4 75 + 2 cos^2 75 sin^2 75 + cos^2 75 sin^2 75 = (sin^2 75 + cos^2 75)^2 + cos^2 75 sin^2 75...... The denominator...... (a+b)^3 = a^3 + b^3 + 3 ab (a+b)...... Cos^6 75 + sin^6 75 + 3 cos^2 75 sin^2 75 (sin^2 75 + cos^2 75)....... Soo, the dominator would be (cos^2 75 + sin^2 75)^3 + cos^2 75 sin^2 75...... Then, (sin^2 75 + cos^2 75)= 1...... Soo, 1 + sin^2 75 cos^2 75/1 + sin^2 75 cos^2 75 = 1...
Assume cos(75) as "C" and sin(75) as "S" Simplifying the numerator or rewriting it gives [(C^2)^2] + [(S^2)^2] + 2(S^2)(C^2) + (S^2)(C^2) => as the first three terms in the above expression are in the form of a^2 + b^2 + 2ab where a=C^2 and b=S^2 We rewrite the numerator(N) as N = [(C^2 + S^2) ^2] + (C^2)(S^2)............................eq(1) Similarly, the denominator is simplified as [(C^2)^3 + [(S^2)^3] + 3(C^2)(S^2) [(C^2) + (S^2)] + (S^2)((C^2) NOTE: Here we've multiplied the third term with the sum of the squares of cos(75) and sin(75) whose value is "1". So the denominator(D) can be rewritten as D = [(C^2) + (S^2)] ^3 +(S^2)(C^2).........................eq(2) Comparing eq(1) & eq(2), we know that the sum of the squares of cos and sin of same angle is always" 1". So the numerator and denominator expresses as N/D = [1+(C^2)(S^2)]/[1+(C^2)(S^2)] Hence the value is "1" & the option B is the right answer.
let cos 75=b , sin 75 =a
The denominator would become - (a^6+b^6+4(a^2.b^2)) Which can be written as -( (a^2)^3+(b^2)^3+4(a^2.b^2)) Using the formula (a^3+b^3)=(a+b)(a^2+b^2-ab) we get (a^2+b^2)(a^4+b^4-a^2.b^2)+4(a^2.b^2) Since sin^2(75) + cos^2(75) = 1 Denominator becomes:- (1)(a^4+b^4-a^2.b^2)+4(a^2.b^2) a^4+b^4-a^2.b^2+4(a^2.b^2)
Hence the numerator and the denominator become the same, which gives 1 as answer.
We can write everything in terms of one variable: a = cos 2 7 5 º , since sin 2 7 5 º is just 1 − a . The fraction then simplifies to:
a 3 + ( 1 − a ) 3 + 4 a ( 1 − a ) a 2 + ( 1 − a ) 2 + 3 a ( 1 − a ) = a 3 + 1 − 3 a + 3 a 2 − a 3 + 4 a − 4 a 2 a 2 + 1 − 2 a + a 2 + 3 a − 3 a 2 = − a 2 + a + 1 − a 2 + a + 1 = 1 .
Problem Loading...
Note Loading...
Set Loading...
The first intuition I got when I saw this question was to apply the product-to-sum formula to convert sin 7 5 cos 7 5 into 2 1 ( sin ( 7 5 + 7 5 ) + sin ( 7 5 − 7 5 ) ) = 2 1 ( sin 1 5 0 ) = 4 1 .
It follows that 3 sin 2 7 5 cos 2 7 5 = 1 6 3 , 4 sin 2 7 5 cos 2 7 5 = 1 6 4 .
The next important intuition to have is ( x 4 + y 4 ) ( x 2 + y 2 ) = x 6 + y 6 + x 4 y 2 + y 4 x 2 . Hence, ( sin 4 7 5 + cos 4 7 5 ) ( sin 2 7 5 + cos 2 7 5 ) = sin 6 7 5 + cos 6 7 5 + sin 4 7 5 cos 2 7 5 + cos 4 7 5 sin 2 7 5 = sin 6 7 5 + cos 6 7 5 + ( sin 2 7 5 + cos 2 7 5 ) ( sin 2 7 5 cos 2 7 5 ) .
Why do we want to do the above? Because of the identity s i n 2 x + c o s 2 x = 1 ! Then it follows from above that: sin 4 7 5 + cos 4 7 5 = sin 6 7 5 + cos 6 7 5 + sin 2 7 5 cos 2 7 5 = sin 6 7 5 + cos 6 7 5 + 1 6 1 .
Hence our expression becomes:
cos 4 7 5 + sin 4 7 5 − 1 6 1 + 1 6 4 cos 4 7 5 + sin 4 7 5 + 1 6 3 = 1