Funky Trigonometric Expression

Geometry Level 2

Find the value of

cos 4 7 5 + sin 4 7 5 + 3 sin 2 7 5 cos 2 7 5 cos 6 7 5 + sin 6 7 5 + 4 sin 2 7 5 cos 2 7 5 . \frac{\cos^4 75^{\circ}+\sin^4 75^{\circ}+3\sin^2 75^{\circ}\cos^2 75^{\circ}}{\cos^6 75^{\circ}+\sin^6 75^{\circ}+4\sin^2 75^{\circ}\cos^2 75^{\circ}}.

2 4 \frac{\sqrt{2}}{4} 1 2 \frac{1}{2} 3 4 \frac{3}{4} 1 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Happy Melodies
Sep 6, 2014

The first intuition I got when I saw this question was to apply the product-to-sum formula to convert sin 75 cos 75 \sin{75} \cos{75} into 1 2 ( sin ( 75 + 75 ) + sin ( 75 75 ) ) = 1 2 ( sin 150 ) = 1 4 \frac{1}{2}(\sin{(75+75)} + \sin {(75-75)}) = \frac{1}{2}(\sin{150}) = \frac{1}{4} .

It follows that 3 sin 2 75 cos 2 75 = 3 16 , 4 sin 2 75 cos 2 75 = 4 16 3 \sin^2 {75} \cos^2 {75} = \frac{3}{16}, 4 \sin^2 {75} \cos^2 {75} = \frac{4}{16} .

The next important intuition to have is ( x 4 + y 4 ) ( x 2 + y 2 ) = x 6 + y 6 + x 4 y 2 + y 4 x 2 (x^4 + y^4)(x^2 + y^2) = x^6 + y^6 + x^4y^2 + y^4x^2 . Hence, ( sin 4 75 + cos 4 75 ) ( sin 2 75 + cos 2 75 ) = sin 6 75 + cos 6 75 + sin 4 75 cos 2 75 + cos 4 75 sin 2 75 = sin 6 75 + cos 6 75 + ( sin 2 75 + cos 2 75 ) ( sin 2 75 cos 2 75 ) (\sin^4 {75} + \cos^4 {75} )(\sin^2 {75} +\cos^2 {75} ) = \sin^6 {75} + \cos^6 {75} + \sin^4 {75} \cos^2 {75} + \cos^4 {75}\sin^2 {75} = \sin^6 {75} + \cos^6 {75} + (\sin^2{75} + \cos^2{75})(\sin^2{75} \cos^2{75}) .

Why do we want to do the above? Because of the identity s i n 2 x + c o s 2 x = 1 sin^2{x} + cos^2 {x} = 1 ! Then it follows from above that: sin 4 75 + cos 4 75 = sin 6 75 + cos 6 75 + sin 2 75 cos 2 75 = sin 6 75 + cos 6 75 + 1 16 . \sin^4 {75} + \cos^4 {75} = \sin^6 {75} + \cos^6 {75} + \sin^2{75} \cos^2{75} = \sin^6 {75} + \cos^6 {75} + \frac{1}{16}.

Hence our expression becomes:

cos 4 75 + sin 4 75 + 3 16 cos 4 75 + sin 4 75 1 16 + 4 16 = 1 \displaystyle \frac{\cos^4{75} + \sin^4{75} + \frac{3}{16}}{\cos^4{75} + \sin^4{75} - \frac{1}{16} + \frac{4}{16}} = \boxed{1}

Actually we can prove that the numerator is equal to denominator for any degrees, not just 75.

It's easy to prove that sin 4 x + cos 4 x = sin 6 x + cos 6 x + sin 2 x cos 2 x \sin^{4}x + \cos^{4}x = \sin^{6}x + \cos^{6}x + \sin^{2}x\cos^{2}x , and we just add 3 sin 2 x cos 2 x 3\sin^{2}x\cos^{2}x to both sides. And we're done!

Samuraiwarm Tsunayoshi - 6 years, 9 months ago
Chew-Seong Cheong
Sep 10, 2014

Let us start with the denominator:

cos 6 7 5 + sin 6 7 5 o + 4 sin 2 7 5 o cos 2 7 5 o \cos^6{75^\circ} + \sin^6{75^o} + 4\sin^2{75^o}\cos^2{75^o}

= ( cos 2 7 5 o + sin 2 7 5 o ) ( cos 4 7 5 o + sin 4 7 5 o ) sin 2 7 5 o cos 4 7 5 o sin 4 7 5 o cos 2 7 5 o + 4 sin 2 7 5 o cos 2 7 5 o = (\cos^2{75^o} + \sin^2{75^o}) (\cos^4{75^o} + \sin^4{75^o}) - \sin^2{75^o}\cos^4{75^o} - \sin^4{75^o}\cos^2{75^o} + 4\sin^2{75^o}\cos^2{75^o}

= ( 1 ) ( cos 4 7 5 o + sin 4 7 5 o ) sin 2 7 5 o cos 2 7 5 o ( sin 2 7 5 o + cos 2 7 5 o ) + 4 sin 2 7 5 o cos 2 7 5 o = (1) (\cos^4{75^o} + \sin^4{75^o}) - \sin^2{75^o}\cos^2{75^o} ( \sin^2{75^o} + \cos^2{75^o}) + 4\sin^2{75^o}\cos^2{75^o}

= cos 4 7 5 o + sin 4 7 5 o sin 2 7 5 o cos 2 7 5 o ( 1 ) + 4 sin 2 7 5 o cos 2 7 5 o = \cos^4{75^o} + \sin^4{75^o} - \sin^2{75^o}\cos^2{75^o} (1) + 4\sin^2{75^o}\cos^2{75^o}

= cos 4 7 5 o + sin 4 7 5 o + 3 sin 2 7 5 o cos 2 7 5 o = numerator = \cos^4{75^o} + \sin^4{75^o} + 3\sin^2{75^o}\cos^2{75^o} = \text{numerator}

Therefore,

cos 4 7 5 o + sin 4 7 5 o + 3 sin 2 7 5 o cos 2 7 5 o cos 6 7 5 o + sin 6 7 5 o + 4 sin 2 7 5 o cos 2 7 5 o \dfrac {\cos^4{75^o} + \sin^4{75^o} + 3\sin^2{75^o}\cos^2{75^o} } {\cos^6{75^o} + \sin^6{75^o} + 4\sin^2{75^o}\cos^2{75^o}}

= cos 4 7 5 o + sin 4 7 5 o + 3 sin 2 7 5 o cos 2 7 5 o cos 4 7 5 o + sin 4 7 5 o + 3 sin 2 7 5 o cos 2 7 5 o = 1 = \dfrac {\cos^4{75^o} + \sin^4{75^o} + 3\sin^2{75^o} \cos^2{75^o} } {\cos^4{75^o} + \sin^4{75^o} + 3 \sin^2{75^o} \cos^2{75^o}} = \boxed{1}

for sin use formula sin(A+B)=sinA.cosB + cosA.sinB n for cos use formula cos(A+B)=cosA.cosB - sinA.sinB

Divyaa Guptaa - 6 years, 9 months ago

Is it nominator or numerator?😅

sanghamitra ghosh - 3 years ago

Log in to reply

Thanks, it should be numerator.

Chew-Seong Cheong - 3 years ago
Rajsuryan Singh
Sep 10, 2014

That was simple the numerator and denominator simplifies to the same expression by basic algebra.... I mean there is no need of product to sum formula just take the numerator as 1+sin^2 (75) cos^2 (75) by ( a + b ) 2 (a+b)^2 Similarly for denominator use ( a + b ) 3 (a+b)^3 formula where a and b are sin^2 (75) and cos ^2 (75)...sorry I am working on phone so I found formatting complicated....

Let a = cos 2 7 5 a = \cos^2 75^{\circ} and b = sin 2 7 5 b = \sin^2 75^{\circ} . Then the expression is of the form a 2 + b 2 + 3 a b a 3 + b 3 + 4 a b . \frac{a^2 + b^2 + 3ab}{a^3 + b^3 + 4ab}. Applying the sum of cubes factorization to the first two terms in the denominator, we have a 2 + b 2 + 3 a b ( a + b ) ( a 2 a b + b 2 ) + 4 a b . \frac{a^2 + b^2 + 3ab}{(a + b)(a^2 - ab + b^2) + 4ab}. But since sin 2 x + cos 2 x = 1 \sin^2 x + \cos^2 x= 1 for any x x , the ( a + b ) (a + b) factor disappears, and we find a 2 + b 2 + 3 a b a 2 + b 2 a b + 4 a b = 1. \frac{a^2 + b^2 + 3ab}{a^2 + b^2 - ab + 4ab} = 1.

Karim Shaféiq
Sep 14, 2014

using calculator ^^

Irvine Dwicahya
Jan 21, 2016

Using algebra identity Cos^2 75 = a Sin^2 75 = b.... (a+b)^2 = a^2 + b^2 + 2ab ....... Then, cos^4 75 + sin^4 75 + 2 cos^2 75 sin^2 75 + cos^2 75 sin^2 75 = (sin^2 75 + cos^2 75)^2 + cos^2 75 sin^2 75...... The denominator...... (a+b)^3 = a^3 + b^3 + 3 ab (a+b)...... Cos^6 75 + sin^6 75 + 3 cos^2 75 sin^2 75 (sin^2 75 + cos^2 75)....... Soo, the dominator would be (cos^2 75 + sin^2 75)^3 + cos^2 75 sin^2 75...... Then, (sin^2 75 + cos^2 75)= 1...... Soo, 1 + sin^2 75 cos^2 75/1 + sin^2 75 cos^2 75 = 1...

Assume cos(75) as "C" and sin(75) as "S" Simplifying the numerator or rewriting it gives [(C^2)^2] + [(S^2)^2] + 2(S^2)(C^2) + (S^2)(C^2) => as the first three terms in the above expression are in the form of a^2 + b^2 + 2ab where a=C^2 and b=S^2 We rewrite the numerator(N) as N = [(C^2 + S^2) ^2] + (C^2)(S^2)............................eq(1) Similarly, the denominator is simplified as [(C^2)^3 + [(S^2)^3] + 3(C^2)(S^2) [(C^2) + (S^2)] + (S^2)((C^2) NOTE: Here we've multiplied the third term with the sum of the squares of cos(75) and sin(75) whose value is "1". So the denominator(D) can be rewritten as D = [(C^2) + (S^2)] ^3 +(S^2)(C^2).........................eq(2) Comparing eq(1) & eq(2), we know that the sum of the squares of cos and sin of same angle is always" 1". So the numerator and denominator expresses as N/D = [1+(C^2)(S^2)]/[1+(C^2)(S^2)] Hence the value is "1" & the option B is the right answer.

Mohammad Saif
Oct 3, 2014

let cos 75=b , sin 75 =a

The numerator would become - (a^4+b^4+3(a^2.b^2))

The denominator would become - (a^6+b^6+4(a^2.b^2)) Which can be written as -( (a^2)^3+(b^2)^3+4(a^2.b^2)) Using the formula (a^3+b^3)=(a+b)(a^2+b^2-ab) we get (a^2+b^2)(a^4+b^4-a^2.b^2)+4(a^2.b^2) Since sin^2(75) + cos^2(75) = 1 Denominator becomes:- (1)(a^4+b^4-a^2.b^2)+4(a^2.b^2) a^4+b^4-a^2.b^2+4(a^2.b^2)

(a^4+b^4+3(a^2.b^2))

Hence the numerator and the denominator become the same, which gives 1 as answer.

Toby M
Jun 6, 2020

We can write everything in terms of one variable: a = cos 2 75 º a = \cos^2 75º , since sin 2 75 º \sin^2 75º is just 1 a 1 - a . The fraction then simplifies to:

a 2 + ( 1 a ) 2 + 3 a ( 1 a ) a 3 + ( 1 a ) 3 + 4 a ( 1 a ) \displaystyle{\frac{a^2+(1-a)^2+3a(1-a)}{a^3+(1-a)^3+4a(1-a)}} = a 2 + 1 2 a + a 2 + 3 a 3 a 2 a 3 + 1 3 a + 3 a 2 a 3 + 4 a 4 a 2 \displaystyle{= \frac{a^2+1-2a+a^2+3a-3a^2}{a^3+1-3a+3a^2-a^3+4a-4a^2}} = a 2 + a + 1 a 2 + a + 1 \displaystyle{= \frac{-a^2+a+1}{-a^2+a+1}} = 1 . \displaystyle{= \boxed{1}}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...