Funny exponent

What are the last eight digits of 7 1 , 000 , 000 7^{1,000,000} ?

Note: Omit the initial zeros of the eight digits. For example, if your answer is 00052049 00052049 , submit 52049 52049 .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 23, 2020

We need to find 7 1 0 6 m o d 1 0 8 7^{10^6} \bmod 10^8 . Let us consider 2 8 2^8 and 5 8 = 5^8= using Chinese remainder theorem .

7 1 0 6 4 9 5 × 1 0 5 (mod 2 8 ) ( 48 + 1 ) 5 × 1 0 5 (mod 2 8 ) ( + 48 × 5 × 1 0 5 + 1 ) (mod 2 8 ) 1 (mod 2 8 ) \begin{aligned} 7^{10^6} & \equiv 49^{5\times 10^5} \text{ (mod }2^8) \\ & \equiv (48+1)^{5\times 10^5} \text{ (mod }2^8) \\ & \equiv (\cdots + 48\times 5 \times 10^5+1) \text{ (mod }2^8) \\ & \equiv 1 \text{ (mod }2^8) \end{aligned}

7 1 0 6 4 9 5 × 1 0 5 (mod 5 8 ) ( 50 1 ) 5 × 1 0 5 (mod 5 8 ) ( 50 × 5 × 1 0 5 + 1 ) (mod 5 8 ) 1 (mod 5 8 ) \begin{aligned} 7^{10^6} & \equiv 49^{5\times 10^5} \text{ (mod }5^8) \\ & \equiv (50-1)^{5\times 10^5} \text{ (mod }5^8) \\ & \equiv (\cdots - 50\times 5 \times 10^5+1) \text{ (mod }5^8) \\ & \equiv 1 \text{ (mod }5^8) \end{aligned}

This means that 7 1 0 6 2 8 n + 1 7^{10^6} \equiv 2^8n+1 , where n n is an integer. And 2 8 n + 1 1 (mod 5 8 ) 2^8n +1 \equiv 1 \text{ (mod }5^8) n = 0 \implies n = 0 and 7 1 0 6 1 (mod 1 0 8 7^{10^6} \equiv \boxed 1 \text{ (mod }10^8 .

Pi Han Goh
Mar 23, 2020

Since 7 4 = 2401 7^4 = 2401 , then 7 1 0 6 = ( 24 × 1 0 2 + 1 ) 1 0 6 / 4 7^{10^6} = (24\times 10^2 + 1)^{10^6 /4} gives a remainder of 1 \boxed1 when divided by 1 0 8 10^8 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...