Funny if you find the key...

Algebra Level 2

Is this number

( 1 + 1 2 ) ( 1 + 1 4 ) ( 1 + 1 6 ) ( 1 + 1 2018 ) \left( 1 + \frac12 \right) \left( 1 + \frac14 \right) \left( 1 + \frac16 \right)\cdots\left( 1 + \frac{1}{2018} \right)

Less than 50 Equal to 50 Greater than 50

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Syed Hamza Khalid
Oct 19, 2018

Here is the key:

(1) Multiply the above expression by:

( 1 + 1 1 ) ( 1 + 1 3 ) ( 1 + 1 5 ) ( 1 + 1 2017 ) \left( 1 + \frac11 \right) \left( 1 + \frac13 \right) \left( 1 + \frac15 \right)\cdots\left( 1 + \frac{1}{2017} \right)

to get the whole thing equal to 2019. 2019 .

(2) Now it is very easy to prove that

( 1 + 1 2 ) ( 1 + 1 4 ) ( 1 + 1 6 ) ( 1 + 1 2018 ) < ( 1 + 1 1 ) ( 1 + 1 3 ) ( 1 + 1 5 ) ( 1 + 1 2017 ) \left( 1 + \frac12 \right) \left( 1 + \frac14 \right) \left( 1 + \frac16 \right)\cdots\left( 1 + \frac{1}{2018} \right) < \left( 1 + \frac11 \right) \left( 1 + \frac13 \right) \left( 1 + \frac15 \right)\cdots\left( 1 + \frac{1}{2017} \right)

(3) Thus:

( 1 + 1 2 ) ( 1 + 1 4 ) ( 1 + 1 6 ) ( 1 + 1 2018 ) < 2019 ( 1 + 1 2 ) ( 1 + 1 4 ) ( 1 + 1 6 ) ( 1 + 1 2018 ) < 50 \left( 1 + \frac12 \right) \left( 1 + \frac14 \right) \left( 1 + \frac16 \right)\cdots\left( 1 + \frac{1}{2018} \right) < \sqrt{2019} \\ \color{#3D99F6} \left( 1 + \frac12 \right) \left( 1 + \frac14 \right) \left( 1 + \frac16 \right)\cdots\left( 1 + \frac{1}{2018} \right) < 50

Naren Bhandari
Oct 20, 2018

Let the number be X X and then we express X = 3 × 5 × 7 × × 2017 × 2019 2 × 4 × 6 × × 2016 × 2018 = 2019 ( 2017 ! ! 2018 ! ! ) note = 2019 ( 2018 ! 2 2018 ( 1009 ! ) 2 ) note = 2019 2 2018 ( 2018 1009 ) \begin{aligned} X & = \dfrac{3\times 5\times 7\times \cdots \times 2017\times 2019}{2\times 4 \times 6\times \cdots \times 2016\times 2018}\\ & = 2019\underbrace{\left(\dfrac{2017!!}{2018!!}\right)}_{\text{note }} = 2019\underbrace{\left(\dfrac{2018!}{2^{2018} \cdot (1009!)^2}\right)}_{\text{note}}= \dfrac{2019}{2^{2018}}\binom{2018}{1009}\end{aligned} We have that asymptotic form for central binomial ( 2 n n ) 4 n π n \binom{2n}{n}\approx \dfrac{4^n}{\sqrt{\pi n}} Setting n = 1009 n =1009 which follows as X = 2019 2 2018 4 1009 1009 π = 2019 1009 π 35.860 < 50 X = \dfrac{2019}{2^{2018}}\cdot \dfrac{4^{1009}}{\sqrt{1009\pi}}=\dfrac{2019}{\sqrt{1009\pi } }\approx 35.860 < 50


Note: ( 2 n 1 ) ! ! = ( 2 n ) ! 2 n n ! (2n-1)!!= \frac{(2n)!}{2^n\cdot n!} and ( 2 n ) ! ! = 2 n n ! (2n)!! = 2^n\cdot n! .

Chew-Seong Cheong
Oct 18, 2018

Let the given product be P = k = 1 1009 ( 1 + 1 2 k ) = exp ( k = 1 1009 ln ( 1 + 1 2 k ) ) \displaystyle P = \prod_{k=1}^{1009} \left(1+\frac 1{2k}\right) = \exp \left(\sum_{k=1}^{1009} \ln \left(1+\frac 1{2k}\right)\right) , where exp ( x ) = e x \exp(x) = e^x . Let S = k = 1 1009 ln ( 1 + 1 2 k ) \displaystyle S = \sum_{k=1}^{1009} \ln \left(1+\frac 1{2k}\right) and we can estimate it with the following integral I I which is slightly larger than S S .

I = 0.5 1009.5 ln ( 1 + 1 2 x ) d x = 0.5 1009.5 ln ( 2 x + 1 2 x ) d x = 0.5 1009.5 ( ln ( 2 x + 1 ) ln ( 2 x ) ) d x = 0.5 1009.5 ( ln 2 + ln ( x + 1 2 ) ln 2 ln x ) d x = [ ( x + 1 2 ) ln ( x + 1 2 ) x ln x ] 0.5 1009.5 3.612155432 \begin{aligned} I & = \int_{0.5}^{1009.5} \ln \left(1+\frac 1{2x}\right) dx = \int_{0.5}^{1009.5} \ln \left(\frac {2x+1}{2x} \right) dx \\ & = \int_{0.5}^{1009.5} \bigg(\ln (2x+1) - \ln (2x)\bigg) dx \\ & = \int_{0.5}^{1009.5} \left(\ln 2 + \ln \left(x+ \frac 12 \right) - \ln 2 - \ln x \right) dx \\ & = \left[ \left(x+ \frac 12 \right) \ln \left(x+ \frac 12 \right) - x\ln x \right]_{0.5}^{1009.5} \\ & \approx 3.612155432 \end{aligned}

Therefore, P = e S < e I e 3.612155432 37.046 < 50 P = e^S < e^I \approx e^{3.612155432} \approx 37.046 \boxed {< 50} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...