Funtegration

Calculus Level 3

If f ( 0 ) = g ( 0 ) = 88 f(0)=g(0)=88 , f ( 10 ) = g ( 10 ) = 99 f(10)=g(10)=99 , and 0 10 f ( x ) g ( x ) d x = 2015 \displaystyle \int _{ 0 }^{ 10 }f(x) g′(x)\ dx = 2015 , find the sum of all possible values of the definite integral 0 10 g ( x ) f ( x ) d x \displaystyle \int _{ 0 }^{ 10 } g ( x) f′ (x)\ dx .


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 22, 2018

I = 0 10 g ( x ) f ( x ) d x By integration by parts = g ( x ) f ( x ) 0 10 0 10 f ( x ) g ( x ) d x = g ( 10 ) f ( 10 ) g ( 0 ) f ( 0 ) 2015 = 9 9 2 8 8 2 2015 = 42 \begin{aligned} I & = \int_0^{10} g(x) f'(x) \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = g(x) f(x) \bigg|_0^{10} - \int_0^{10} f(x) g'(x) \ dx \\ & = g(10)f(10)-g(0)f(0) - 2015 \\ & = 99^2 - 88^2 - 2015 \\ & = \boxed{42} \end{aligned}

Tom Engelsman
Dec 23, 2017

Taking the definite integral 0 10 f ( x ) g ( x ) d x = 2015 \int_{0}^{10} f(x)g'(x) dx = 2015 , a simple application of integration-by-parts yields:

0 10 f ( x ) g ( x ) d x = f ( x ) g ( x ) 0 10 f ( x ) g ( x ) d x = 2015 0 10 f ( x ) g ( x ) d x = f ( x ) g ( x ) 0 10 2015 ; \int_{0}^{10} f(x)g'(x) dx = f(x)g(x) - \int_{0}^{10} f'(x)g(x) dx = 2015 \Rightarrow \int_{0}^{10} f'(x)g(x) dx = f(x)g(x)|_{0}^{10} - 2015;

or 0 10 f ( x ) g ( x ) d x = [ f ( 10 ) g ( 10 ) f ( 0 ) g ( 0 ) ] 2015 = 9 9 2 8 8 2 2015 = 42 . \int_{0}^{10} f'(x)g(x) dx = [f(10)g(10) - f(0)g(0)] - 2015 = 99^2 - 88^2 - 2015 = \boxed{42}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...