f ( x ) + f 1 ( x ) f(x) +f^{-1}(x)

Calculus Level 3
  • If f ( a ) = a f(a) =a and f ( b ) = b f(b) =b , then find the value of a a that makes a b [ f ( x ) + f 1 ( x ) ] d x = b 2 2 a + 1 \int_{a}^{b} [f(x) + f^{-1} (x)]dx = b^2-2a+1
  • [ f ( x ) f(x) and f 1 ( x ) f^{-1}(x) are functions]


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tapas Mazumdar
Aug 26, 2017

It is interesting to see that b = f ( b ) = f ( f ( b ) ) = f ( f ( f ( b ) ) ) = f ( f ( . . . f ( f ( b ) ) ) ) n number of times b = f(b) = f(f(b)) = f(f(f(b))) = \overbrace{f(f( ... f(f(b))))}^{'n' \text{ number of times}} (similarly with a a ).

Now, our integral is

a b [ f ( x ) + f 1 ( x ) ] d x \int_a^b \left[ f(x) + f^{-1} (x) \right] \,dx

We know that f 1 ( f ( y ) ) = y f^{-1} (f(y)) = y and so by substituting x = f ( y ) d x = f ( y ) d y x = f(y) \implies dx = f'(y) \,dy so that a b f ( a ) f ( b ) = a b \displaystyle \int_a^b \mapsto \int_{f(a)}^{f(b)} = \int_a^b , we get

\begin{aligned} \displaystyle \int_a^b \left[ f(f(y)) + y \right] f'(y) \,dy &= \int_a^b f(f(y)) f'(y) \,dy + \int_a^b y f'(y) \,dy \\ \displaystyle &= \int_a^b f(z) \,dz + \left[ yf(y) {{\huge|}_a^b} - \int_a^b f(y) \,dy \right] & \small\color{#3D99F6}{\text{Substituting } f(y) = z \text{ in the first integral} \\ \text{Integrating second integral by parts}} \\ \displaystyle &= bf(b) - af(a) = b^2 -a^2 \end{aligned}

Thus

b 2 a 2 = b 2 2 a + 1 a 2 2 a + 1 = 0 ( a 1 ) 2 = 0 a = 1 b^2 - a^2 = b^2 - 2a + 1 \implies a^2 - 2a + 1 = 0 \implies {(a-1)}^2 = 0 \implies \boxed{a=1}

Hussain Alghazal
Aug 26, 2017
  • a b [ f ( x ) + f 1 ( x ) ] d x = b 2 2 a + 1 \int_{a}^{b} [f(x) +f^{-1}(x)]dx=b^2-2a+1
  • a b f ( x ) d x + f ( a ) f ( b ) f 1 ( x ) d x = b f ( b ) a f ( a ) \color{#D61F06} {\int_{a}^{b} f(x) dx +\int_{f(a) }^{f(b) } f^{-1}(x)dx =bf(b)-af(a)} , f ( x ) a n d f 1 ( x ) a r e f u n c t i o n s \color{#D61F06} {f(x) and f^{-1}(x) are functions}
  • a b [ f ( x ) + f 1 ( x ) ] d x = b 2 a 2 \therefore\int_{a}^{b} [f(x) +f^{-1}(x)]dx=b^2-a^2
  • b 2 a 2 = b 2 2 a + 1 a 2 2 a + 1 a = 1 \therefore b^2-a^2=b^2-2a+1 \rightarrow a^2-2a+1\Rightarrow a=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...