Gabriel's Horn Revisited

Calculus Level 5

Let e e be Euler's number and x > 1 |x| > 1 .

Let f ( x ) = lim n j = 1 n ( 1 x ) j j = 1 n ( j n ) n ( 1 x ) n j f(x) = \lim_{n \rightarrow \infty} \dfrac{\sum_{j = 1}^{n} (\dfrac{1}{x})^{j}}{\sum_{j = 1}^{n} (\dfrac{j}{n})^n (\dfrac{1}{x})^{n - j}} and g ( x ) = 1 x g(x) = \dfrac{1}{x} .

If the region R R bounded by the two curves f ( x ) f(x) and g ( x ) g(x) on [ 2 , ) [2,\infty) is revolved about the x x -axis the resulting volume V V can be expressed as V = ( ( e λ ) π β e β ) ( e α + β β ln ( β ) ) V =(\dfrac{(e - \lambda)\pi}{\beta e^{\beta}}) (e - \alpha + \beta^{\beta}\ln(\beta)) , where α , β \alpha, \beta and λ \lambda are coprime positive integers.

Find α + β + λ \alpha + \beta + \lambda .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Jun 13, 2018

Let x > 1 |x| > 1 .

lim n j = 1 n ( j n ) n ( 1 x ) n j = \lim_{n \rightarrow \infty} \sum_{j = 1}^{n} (\dfrac{j}{n})^n (\dfrac{1}{x})^{n - j} = lim n j = 0 n 1 ( 1 j n ) n ( 1 x ) j = \lim_{n \rightarrow \infty} \sum_{j = 0}^{n - 1} (1 - \dfrac{j}{n})^n (\dfrac{1}{x})^{j} = j = 0 ( 1 e x ) j = e x e x 1 \sum_{j = 0}^{\infty} (\dfrac{1}{ex})^j = \dfrac{ex}{ex - 1} on x > 1 e |x| > \dfrac{1}{e}

f ( x ) = lim n j = 1 n ( 1 x ) j j = 1 n ( j n ) n ( 1 x ) n j = e x 1 e x ( x 1 ) \implies f(x) = \lim_{n \rightarrow \infty} \dfrac{\sum_{j = 1}^{n} (\dfrac{1}{x})^{j}}{\sum_{j = 1}^{n} (\dfrac{j}{n})^n (\dfrac{1}{x})^{n - j}} = \dfrac{ex - 1}{ex(x - 1)} .on x > 1 |x| > 1 .

Let g ( x ) = 1 x g(x) = \dfrac{1}{x} .

The volume V = π 2 f ( x ) 2 g ( x ) 2 d x V = \pi\int_{2}^{\infty} f(x)^2 - g(x)^2 dx .

For I ( x ) = f ( x ) 2 d x = 1 e 2 e 2 x 2 2 e x + 1 x 2 ( x 1 ) 2 d x I(x) = \int f(x)^2 dx = \dfrac{1}{e^2}\int \dfrac{e^2x^2 - 2ex + 1}{x^2(x - 1)^2} dx

Using partial fractions we have:

e 2 x 2 2 e x + 1 x 2 ( x 1 ) 2 = A x + B x 2 + C x 1 + D ( x 1 ) 2 \dfrac{e^2x^2 - 2ex + 1}{x^2(x - 1)^2} = \dfrac{A}{x} + \dfrac{B}{x^2} + \dfrac{C}{x - 1} + \dfrac{D}{(x - 1)^2} \implies

e 2 x 2 2 e x + 1 = ( A + C ) x 3 + ( 2 A + B C + D ) x 2 + ( A 2 B ) x + B e^2x^2 - 2ex + 1 = (A + C)x^3 + (-2A + B - C + D)x^2 + (A - 2B)x +B \implies

A + C = 0 A + C = 0

2 A + B C + D = e 2 -2A + B - C + D = e^2

A 2 B = 2 e A - 2B = -2e

B = 1 B = 1

B = 1 A = 2 ( 1 e ) C = 2 ( 1 e ) D = ( e 1 ) 2 B = 1 \implies A = 2(1 - e) \implies C = -2(1 - e) \implies D = (e - 1)^2 \implies

I ( x ) 2 = 1 e 2 2 2 ( 1 e ) x + 1 x 2 2 ( 1 e ) x 1 + ( e 1 ) 2 ( x 1 ) 2 d x I(x)|_{2}^{\infty} = \dfrac{1}{e^2}\int_{2}^{\infty} \dfrac{2(1 - e)}{x} + \dfrac{1}{x^2} - \dfrac{2(1 - e)}{x - 1} + \dfrac{(e - 1)^2}{(x - 1)^2} dx = 1 e 2 ( 2 ( 1 e ) ln ( 1 + 1 x 1 ) 1 x ( e 1 ) 2 x 1 ) 2 = ( 2 ( e 1 ) e 2 ln ( 2 ) + 1 2 e 2 + ( e 1 ) 2 e 2 ) \dfrac{1}{e^2}(2(1 - e)\ln(1 + \dfrac{1}{x - 1}) - \dfrac{1}{x} - \dfrac{(e - 1)^2}{x - 1})|_{2}^{\infty} = (\dfrac{2(e - 1)}{e^2}\ln(2) + \dfrac{1}{2e^2} + \dfrac{(e - 1)^2}{e^2})

and

2 g ( x ) 2 d x = 2 1 x 2 d x = 1 x 2 = 1 2 \int_{2}^{\infty} g(x)^2 dx = \int_{2}^{\infty} \dfrac{1}{x^2} dx = -\dfrac{1}{x}|_{2}^{\infty} = \dfrac{1}{2}

V = ( ( e 1 ) π 2 e 2 ) ( e 3 + 4 ln ( 2 ) ) = ( ( e λ ) π β e β ) ( e α + β β ln ( β ) ) α + β + λ = 6 \implies V = (\dfrac{(e - 1)\pi}{2e^2})(e - 3 + 4\ln(2)) = (\dfrac{(e - \lambda)\pi}{\beta e^{\beta}}) (e - \alpha + \beta^{\beta}\ln(\beta)) \implies \alpha + \beta + \lambda = \boxed{6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...