Γ \Gamma Circle

Geometry Level 4

Given the circle Γ \Gamma with P Q PQ is the diameter of the circle Γ \Gamma . The point R R lies outside the circle Γ \Gamma so that the P R PR and Q R QR lines intersect circles Γ \Gamma successively at points X X and Y Y . Given P Q = 30 PQ = 30 units and P X : P R = Q Y : Q R = 1 : 3 PX: PR = QY: QR = 1: 3 . If the area of ​​the P Q R \triangle{PQR} can be expressed in the form a b a\sqrt{b} unit area where a , b N a, b \in \mathbb {N} , find the value of a + b a + b .


The answer is 230.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

C h o r d X Y i s P Q s i n c e R X / R P = R Y / R Q = 2 / 3. X Y = 20. d i s t a n c e b e t w e e n X Y a n d P Q = 1 5 2 1 0 2 = 5 5 . S o a l t i t u d e f r o m R t o P Q = 3 5 5 . A r e a Δ R P Q = 1 2 30 15 5 = 225 5 = a b . a + b = 230. Chord~ XY~is~||~PQ~since~RX/RP=RY/RQ=2/3.\\ \therefore~XY=20.\\ \implies~~\bot~distance~between~XY~and~PQ~=\sqrt{15^2-10^2}=5\sqrt5.\\ So~altitude~from~R~to~PQ=3*5\sqrt5.\\ Area~\Delta~RPQ=\frac 1 2*30*15\sqrt5=225\sqrt5=a\sqrt b.\\ a+b=\large~~\color{#D61F06}{230}.

Steven Yuan
Mar 11, 2018

First, we show that P R = Q R . PR = QR. By the problem condition, we have R X = 2 3 P R RX = \dfrac{2}{3}PR and R Y = 2 3 R Q . RY = \dfrac{2}{3} RQ. Applying Power of a Point to R R yields

R X ( R P ) = R Y ( R Q ) 2 3 R P 2 = 2 3 R Q 2 R P = R Q . \begin{aligned} RX(RP) &= RY(RQ) \\ \dfrac{2}{3}RP^2 &= \dfrac{2}{3}RQ^2 \\ RP &= RQ. \end{aligned}

Thus, P Q R \triangle PQR is isosceles. Let P X = Q Y = a , PX = QY = a, so that X R = Y R = 2 a . XR = YR = 2a. Draw X Q , XQ, and note that P X Q = 9 0 , \angle PXQ = 90^{\circ}, since it subtends a semicircle arc. By applying Pythagorean Theorem on right triangle R X Q , RXQ, we can find X Q XQ in terms of a a :

R X 2 + X Q 2 = Q R 2 ( 2 x ) 2 + X Q 2 = ( 3 x ) 2 X Q = x 5 . \begin{aligned} RX^2 + XQ^2 &= QR^2 \\ (2x)^2 + XQ^2 &= (3x)^2 \\ XQ &= x \sqrt{5}. \end{aligned}

Doing the same for P X Q \triangle PXQ gives us a value for a 2 a^2 :

P X 2 + X Q 2 = P Q 2 a 2 + ( a 5 ) 2 = 3 0 2 6 a 2 = 900 a 2 = 150. \begin{aligned} PX^2 + XQ^2 &= PQ^2 \\ a^2 + (a \sqrt{5})^2 &= 30^2 \\ 6a^2 &= 900 \\ a^2 &= 150. \end{aligned}

Therefore, the area of P Q R \triangle PQR is

( P R ) ( X Q ) 2 = 3 a 2 5 2 = 3 ( 150 ) 5 2 = 225 5 , \dfrac{(PR)(XQ)}{2} = \dfrac{3a^2 \sqrt{5}}{2} = \dfrac{3(150) \sqrt{5}}{2} = 225 \sqrt{5},

and m + n = 225 + 5 = 230 . m + n = 225 + 5 = \boxed{230}.

Aareyan Manzoor
Mar 11, 2018

notice by symmetry that Δ P Q R \Delta PQR is iscoceles. let O be the center of the circle, then O R = ( 3 x ) 2 1 5 2 = 3 x 2 5 2 OR=\sqrt{(3x)^2-15^2}=3\sqrt{x^2-5^2} is the altitude. applying power of a point to R, 2 x ( 3 x ) = ( 3 x 2 5 2 15 ) ( 3 x 2 5 2 + 15 ) 6 x 2 = 9 x 2 225 225 x = 150 2x(3x)=(3\sqrt{x^2-5^2}-15)(3\sqrt{x^2-5^2}+15)\to 6x^2=9x^2-225-225 \\ \to x=\sqrt{150} we get the area [ Δ P Q R ] = 15 × 3 x 2 5 2 = 225 5 [\Delta PQR]=15\times 3\sqrt{x^2-5^2}=225\sqrt{5}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...