Gamma Function Basics

Calculus Level 3

Γ ( 11 2 ) Γ ( 11 4 ) Γ ( 13 4 ) = ? \large \frac { \Gamma \left(\frac { 11 }{ 2 } \right) }{ \Gamma \left(\frac { 11 }{ 4 }\right)\Gamma \left(\frac { 13 }{ 4 } \right) } = \ ?

Notation: Γ ( ) \Gamma (\cdot) denotes the gamma function .

16 π 2 16\sqrt { \frac { \pi }{ 2 } } 20 π 3 \sqrt { \frac { 20-\pi }{ 3 } } 6 π 3 6-\sqrt { \frac { \pi }{ 3 } } 16 2 π 16\sqrt { \frac { 2 }{ \pi } } 18 π 3 \frac { 18\pi }{ 3 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Michael Mendrin
Jun 17, 2018

Using the duplication formula for Gamma function, we have

Γ ( 11 2 ) Γ ( 11 4 ) Γ ( 13 4 ) = \dfrac{\Gamma(\frac{11}{2})}{\Gamma(\frac{11}{4})\Gamma(\frac{13}{4})}=

Γ ( 11 2 ) ( 2 1 11 2 π ) Γ ( 11 2 ) = \dfrac{\Gamma(\frac{11}{2})}{(2^{1-\frac{11}{2}}\sqrt{\pi})\Gamma(\frac{11}{2})}=

16 2 π 16\sqrt{\frac{2}{\pi}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...