Gamma, Gamma, everywhere! P2

Calculus Level 3

0 d x ( 1 + x 97 ) 2 = ? \large\int_0^∞ \frac{dx}{(1+x^{97})^2} = \ ?


The answer is 0.9898.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = 0 d x ( 1 + x 97 ) 2 I= \int_0^∞ \frac{dx}{(1+x^{97})^2} Take u = x 97 u = x^{97} the integral becomes 1 97 0 u 96 97 ( 1 + u ) 2 d u \frac{1}{97} \int_0^∞ u^{-\frac{96}{97}}(1+u)^{-2}du Take u u + 1 = t \frac{u}{u+1} = t the integral becomes 1 97 0 1 t 96 97 ( 1 t ) 96 97 d t \frac{1}{97} \int_0^1 t^{-\frac{96}{97}} (1-t)^{\frac{96}{97}}dt = 1 97 B ( 1 97 , 1 + 96 97 ) = \frac{1}{97} \Beta{{(\frac{1}{97} , 1+\frac{96}{97})}} = 1 97 Γ ( 1 97 ) Γ ( 193 97 ) Γ ( 2 ) = \frac{1}{97} \frac{\Gamma{(\frac{1}{97})}\Gamma{(\frac{193}{97})}}{\Gamma{(2)}} = 96 9 7 2 × 1 ! Γ ( 1 97 ) Γ ( 96 97 ) = \frac{96}{97^2 ×1!} \Gamma{(\frac{1}{97})}\Gamma{(\frac{96}{97})} Note , Γ ( 1 n ) Γ ( n ) = π sin ( π n ) \Gamma{(1-n)}\Gamma{(n)} = \frac{π}{\sin{(πn)}} = 96 9409 . π sin ( π 97 ) =\boxed{ \color{#CEBB00}\frac{96}{9409} .\frac{π}{\sin{(\frac{π}{97})}}} Or \textrm{Or} 96 9409 . π sin ( 96 π 97 ) \boxed{ \color{#3D99F6}\frac{96}{9409} .\frac{π}{\sin{(\frac{96π}{97})}}}

@Dwaipayan Shikari , use B ( ) \rm B(\cdot) for beta function, B \rm B is the uppercase of the Greek letter beta just like Γ \Gamma is the uppercase for γ \gamma . And we don't write γ ( ) \gamma (\cdot) for gamma function.

Chew-Seong Cheong - 6 months ago

Log in to reply

Okay sir !

Dwaipayan Shikari - 6 months ago

Similar solution with @Dwaipayan Shikari 's

I = 0 d x ( 1 + x 97 ) 2 Let u = x 97 d u = 97 x 96 d x = 0 97 u 96 97 ( 1 + u ) 2 d u Beta function B ( m + 1 , n + 1 ) = 0 u m ( 1 + u ) m + n + 1 d u = B ( 1 97 , 1 96 97 ) 97 B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) , where Γ ( ) is gamma function. = Γ ( 1 97 ) Γ ( 1 96 97 ) 97 Γ ( 2 ) Note that Γ ( 1 + s ) = s Γ ( s ) = 96 Γ ( 1 97 ) Γ ( 96 97 ) 97 97 1 ! and Γ ( n ) = ( n 1 ) ! = 96 Γ ( 1 97 ) Γ ( 1 1 97 ) 9409 and also Γ ( s ) Γ ( 1 s ) = π sin ( π s ) = 96 π 9409 sin π 97 0.990 \begin{aligned} I & = \int_0^\infty \frac {dx}{(1+x^{97})^2} & \small \blue{\text{Let }u = x^{97} \implies du = 97 x^{96} dx} \\ & = \int_0^\infty \frac {97 u^{-\frac {96}{97}}}{(1+u)^2} du & \small \blue{\text{Beta function }\text B (m+1, n+1) = \int_0^\infty \frac {u^m}{(1+u)^{m+n+1}}du} \\ & = \frac {\text B \left(\frac 1{97}, 1\frac {96}{97} \right)}{97} & \small \blue{\text B (m,n)= \frac {\Gamma(m)\Gamma(n)}{\Gamma(m+n)} \text{, where }\Gamma(\cdot) \text{ is gamma function.}} \\ & = \frac {\Gamma\left(\frac 1{97}\right) \blue{\Gamma \left(1\frac {96}{97} \right)}}{97 \red{\Gamma(2)}} & \small \blue{\text{Note that }\Gamma(1+s) = s\Gamma(s)} \\ & = \frac {\blue{96} \Gamma\left(\frac 1{97}\right) \blue{\Gamma \left(\frac {96}{97} \right)}}{97 \cdot \blue{97} \cdot \red{1!}} & \small \red{\text{and }\Gamma(n) = (n-1)!} \\ & = \frac {96\blue{\Gamma \left(\frac 1{97}\right)\Gamma\left(1-\frac 1{97}\right)}}{9409} & \small \blue{\text{and also } \Gamma(s) \Gamma(1-s) = \frac \pi{\sin (\pi s)}} \\ & = \frac {96 \blue \pi}{9409 \blue{\sin \frac \pi{97}}} \approx \boxed{0.990} \end{aligned}


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...