∫ 0 ∞ e − x 7 sin ( x 7 ) d x = q 2 sin ( a π ) Γ ( c b )
The equation above holds true for positive integers a , b , c , and q , with b and c being coprime integers.
Find the value of q a ( b − c ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1 − i is not necessarily equal to 2 e − π / 4 i . It could also be equal to 2 e ( − π / 4 + 1 0 0 0 0 0 π ) i .
Your solution is incomplete.
∫ 0 ∞ e − x 7 sin ( x 7 ) d x = 2 i 1 ( ∫ 0 ∞ e − x 7 + i x 7 − ∫ 0 ∞ e − x 7 − i x 7 d x ) As s i n x = 2 i e i x − e − i x
Take x 7 = u then the integral becomes 1 4 i 1 ( ∫ 0 ∞ u − 6 / 7 e − u ( 1 − i ) d u − ∫ 0 ∞ u − 6 / 7 e − u ( 1 + i ) d u ) Take u ( 1 − i ) = t , a n d , u ( 1 + i ) = p Then the integral becomes 1 4 i ( 1 − i ) 1 / 7 1 ∫ 0 ∞ t − 6 / 7 e − t d t − 1 4 i ( 1 + i ) 1 / 7 1 ∫ 0 ∞ p − 6 / 7 e − p d p Which is Γ ( 7 1 ) ( 1 4 i ( 1 − i ) 1 / 7 1 − 1 4 i ( 1 + i ) 1 / 7 1 ) ( 1 − i ) 1 / 7 = 1 4 2 e − π i / 2 8 , ( 1 + i ) 1 / 7 = 1 4 2 e π i / 2 8 So the integral will be 1 4 i ( 1 4 2 ) 1 Γ ( 1 / 7 ) ( 2 i sin ( 2 8 π ) )
Answer is 1 4 2 Γ ( 7 8 ) sin ( 2 8 π )
@Dwaipayan Shikari , you should put a backslash "\" in front of all functions such as \sin x ( sin x ). Note that sin is not in italic but x is in italic and there is a space between sin and x. Note i sin x ( i s i n x ) , there are spaces among them but i \sin x ( i sin x ) is with the spaces.
You can enter \pi π , \Gamma Γ , \alpha α , \beta β , etc. You can also enter \frac bc c b and \dfrac \pi 2 2 π .
You have to mention b and c be coprime integers. Because 7 8 = 1 4 1 6 = 2 1 2 4 ⋯ , there are infinitely many solutions.
I have amended the problem statement for you.
I = ∫ 0 ∞ e − x 7 sin x 7 d x
Let: x 7 = z . This transforms the integral to:
I = 7 1 ∫ 0 ∞ e − z sin z z − 6 / 7 d z
Knowing that:
sin z = 2 i e i z − e − i z
⟹ I = 7 1 ∫ 0 ∞ e − z ( 2 i e i z − e − i z ) z − 6 / 7 d z ⟹ I = 1 4 i 1 ( ∫ 0 ∞ e − ( 1 − i ) z z − 6 / 7 d z − ∫ 0 ∞ e − ( 1 + i ) z z − 6 / 7 d z )
Let:
J ( a ) = ∫ 0 ∞ e − a z z − 6 / 7 d z ⟹ I = 1 4 i 1 ( J ( 1 − i ) − J ( 1 + i ) )
Taking a z = t transforms the integral to:
J ( a ) = a 1 / 7 1 ∫ 0 ∞ e − t t − 6 / 7 d t J ( a ) = a 1 / 7 Γ ( 7 1 )
The above is obtained using the definition of the Gamma function. Plugging the above result in I gives:
I = 1 4 i 1 ( J ( 1 − i ) − J ( 1 + i ) ) I = 7 ( 2 i ) Γ ( 7 1 ) ( ( 1 − i ) 1 / 7 1 − ( 1 + i ) 1 / 7 1 ) I = 2 i Γ ( 7 8 ) ( ( 1 − i ) 1 / 7 1 − ( 1 + i ) 1 / 7 1 ) ∵ Γ ( n + 1 ) = n Γ ( n )
Now: 1 − i = 2 e − i π / 4 ( 1 − i ) 1 / 7 = 2 1 / 1 4 e − i π / 2 8
Similarly:
( 1 + i ) 1 / 7 = 2 1 / 1 4 e i π / 2 8
Plugging these results and simplifying:
I = 2 i Γ ( 7 8 ) ( e i π / 2 8 − e − i π / 2 8 ) 2 1 / 1 4 1 ⟹ I = 2 1 / 1 4 Γ ( 7 8 ) sin ( 2 8 π )
Thanking you for interacting sir!
Consider the integral, with n > 0 ,
I n = ∫ 0 ∞ e − x n sin x n d x .
Substitute with t = x n , we have
I n = n 1 ∫ 0 ∞ t n 1 − 1 e − t sin t d t
Define
J n 1 ( z ) = ∫ 0 ∞ t n 1 − 1 e − t sin z t d t
and
J n 2 ( z ) = ∫ 0 ∞ t n 1 − 1 e − t cos z t d t .
It follows that
d z d J n 1 ( z ) = ∫ 0 ∞ t n 1 e − t cos z t d t = [ 1 + z 2 t n 1 e − t ( − cos z t + z sin z t ) ] 0 ∞ − n ( 1 + z 2 ) 1 ∫ 0 ∞ t n 1 − 1 e − t ( − cos z t + z sin z t ) d t , (Integrate by part with u = t 1 / n , d v = e − t cos z t d t ) = − n ( 1 + z 2 ) z J n 1 + n ( 1 + z 2 ) 1 J n 2
and
d z d J n 2 ( z ) = − ∫ 0 ∞ t n 1 e − t sin z t d t = [ − 1 + z 2 t n 1 e − t ( − sin z t − z cos z t ) ] 0 ∞ + n ( 1 + z 2 ) 1 ∫ 0 ∞ t n 1 − 1 e − t ( − sin z t + z cos z t ) d t , (Integrate by part with u = t 1 / n , d v = e − t sin z t d t ) = − n ( 1 + z 2 ) 1 J n 1 − n ( 1 + z 2 ) z J n 2 .
We can write this system of differential equations as
d t d [ J n 1 ( z ) J n 2 ( z ) ] = [ − n ( 1 + z 2 ) z − n ( 1 + z 2 ) 1 n ( 1 + z 2 ) 1 − n ( 1 + z 2 ) z ] [ J n 1 ( z ) J n 2 ( z ) ]
with initial condition
[ J n 1 ( 0 ) J n 2 ( 0 ) ] = [ ∫ 0 ∞ t n 1 − 1 e − t sin 0 t d t ∫ 0 ∞ t n 1 − 1 e − t cos 0 t d t ] = [ 0 Γ ( n 1 ) ]
Let
A ( z ) = [ − n ( 1 + z 2 ) z − n ( 1 + z 2 ) 1 n ( 1 + z 2 ) 1 − n ( 1 + z 2 ) z ] .
Then,
∫ 0 z A ( z ) d z = [ − 2 n 1 lo g ( 1 + z 2 ) − n 1 arctan z n 1 arctan z − 2 n 1 lo g ( 1 + z 2 ) ]
and
e ∫ 0 z A ( z ) d z = [ ( 1 + z 2 ) − 2 n 1 cos ( n arctan z ) − ( 1 + z 2 ) − 2 n 1 sin ( n arctan z ) ( 1 + z 2 ) − 2 n 1 sin ( n arctan z ) ( 1 + z 2 ) − 2 n 1 cos ( n arctan z ) ] .
The solution of the differential equations is
[ J n 1 ( z ) J n 2 ( z ) ] = e ∫ 0 z A ( z ) d z [ J n 1 ( 0 ) J n 2 ( 0 ) ] = [ ( 1 + z 2 ) − 2 n 1 cos ( n arctan z ) − ( 1 + z 2 ) − 2 n 1 sin ( n arctan z ) ( 1 + z 2 ) − 2 n 1 sin ( n arctan z ) ( 1 + z 2 ) − 2 n 1 cos ( n arctan z ) ] [ 0 Γ ( n 1 ) ] = [ ( 1 + z 2 ) − 2 n 1 sin ( n arctan z ) Γ ( n 1 ) ( 1 + z 2 ) − 2 n 1 cos ( n arctan z ) Γ ( n 1 ) ]
Finally, the given integral, using n = 7 , can be evaluated as
I 7 = 7 1 J 7 1 ( 1 ) = 1 4 2 sin ( 2 8 π ) Γ ( 7 8 )
Problem Loading...
Note Loading...
Set Loading...
I = ∫ 0 ∞ e − x 7 sin x 7 d x = ℑ ( ∫ 0 ∞ e − x 7 + x 7 i d x ) = ℑ ( ∫ 0 ∞ 7 7 1 − i t − 7 6 e − t d t ) = ℑ ( 7 7 ( 1 − i ) Γ ( 7 1 ) ) = ℑ ⎝ ⎛ 7 2 e ( 2 n − 4 1 ) π i Γ ( 7 8 ) ⎠ ⎞ = ℑ ( 1 4 2 e 2 8 8 n + 1 π i Γ ( 7 8 ) ) = ℑ ⎝ ⎛ 1 4 2 ( cos 2 8 ( 8 n + 1 ) π + i sin 2 8 ( 8 n + 1 ) π ) Γ ( 7 8 ) ⎠ ⎞ = 1 4 2 sin 2 8 ( 8 n + 1 ) π Γ ( 7 8 ) = 1 4 2 sin 2 8 π Γ ( 7 8 ) By Euler’s formula: e θ i = cos θ + i sin θ ℑ ( ⋅ ) denotes the imaginary part function. Let t = ( 1 − i ) x 7 ⟹ d t = 7 ( 1 − i ) x 6 d x Gamma function Γ ( s ) = ∫ 0 ∞ t s − 1 e − t d t and Γ ( 1 + s ) = s Γ ( s ) By Euler’s formula Checking with the numerical value of I
Therefore q a ( b − c ) = 1 4 2 8 ( 8 − 7 ) = 2 .