Gamma multiplied by Gamma

Calculus Level 4

0 8 x 11 3 18 e x 4 3 5 3 d x \large \int _{ 0 }^{ \infty }{ \sqrt [ 3 ]{ \frac { 8{ x }^{ 11 } }{ { 3 }^{ 18 }{ e }^{ \frac { { x }^{ 4 } }{ { 3 }^{ 5 } } } } } } dx

If the above problem is of the form 1 a Γ ( 1 b ) \sqrt { \frac { 1 }{ a } } \Gamma (\frac { 1 }{ b } ) , where a and b are integers, find sin ( 2 Γ ( 3 b ) Γ ( 9 b ) a ) \sin \left({ \frac { 2\Gamma (\frac { 3 }{ b })\Gamma (\frac { 9 }{ b } ) }{ \sqrt { a } } } \right) . Write your answer to two decimal places.

Notation: Γ ( ) \Gamma (\cdot) denotes the gamma function.


The answer is 0.71.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tapas Mazumdar
Jun 5, 2017

Relevant wiki: Gamma Function

I = 0 8 x 11 3 18 e x 4 / 3 5 3 d x = 0 2 x 11 / 3 3 6 e x 4 / 3 6 d x = 3 2 0 t 1 / 6 e t d t x 4 3 6 = t 4 x 3 3 6 d x = d t and 0 0 = 3 2 Γ ( 7 6 ) = 1 4 Γ ( 1 6 ) Γ ( s + 1 ) = s Γ ( s ) \begin{aligned} \displaystyle I &= \int_0^\infty \sqrt[3] {\dfrac{8 x^{11}}{3^{18} e^{{x^4}/{3^5}}}} \, dx \\ &= \displaystyle \int_0^\infty \dfrac{2 x^{{11}/{3}}}{3^6 e^{{x^4}/{3^6}}} \, dx \\ &= \displaystyle \dfrac 32 \int_0^\infty t^{{1}/{6}} e^{-t} \, dt & \small {\color{#3D99F6} \dfrac{x^4}{3^6} = t \implies \dfrac{4x^3}{3^6} dx = dt \text{ and } \displaystyle \int_0^\infty \mapsto \int_0^\infty} \\ &= \displaystyle \dfrac 32 \Gamma \left( \dfrac 76 \right) \\ &= \displaystyle \dfrac 14 \Gamma \left( \dfrac 16 \right) & \small {\color{#3D99F6} \Gamma (s+1) = s \Gamma (s) } \end{aligned}

Thus a = 16 a=16 and b = 6 b=6 .

Now

sin ( 2 Γ ( 3 6 ) Γ ( 9 6 ) 4 ) = sin ( Γ ( 1 2 ) 1 2 Γ ( 1 2 ) 2 ) = sin ( π 4 ) Γ ( 1 2 ) = π = 1 2 0.71 \begin{aligned} \displaystyle \sin \left( \dfrac{2 \Gamma \left( \dfrac 36 \right) \Gamma \left( \dfrac 96 \right)}{4} \right) &= \displaystyle \sin \left( \dfrac{ \Gamma \left( \dfrac 12 \right) \cdot \dfrac 12 \cdot \Gamma \left( \dfrac 12 \right)}{2} \right) \\ &= \displaystyle \sin \left( \dfrac{\pi}{4} \right) & \small {\color{#3D99F6} \Gamma \left( \dfrac 12 \right) = \sqrt{\pi} } \\ &= \displaystyle \dfrac{1}{\sqrt 2} \approx \boxed{0.71} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...