Gaussian integral 2016, Part I

Calculus Level 3

The Gaussian integral states that + e x 2 d x = π \displaystyle \int_{-\infty}^{+\infty} e^{-x^2 } \, dx = \sqrt{\pi } .

Given that information (if it is related at all to this problem), evaluate the integral

+ e 25 9 ( x + 2016 ) 2 d x \displaystyle \int_{- \infty}^{+\infty} e^{-\frac{25}{9} (x+2016)^{2}} \, dx

If the integral above can be expressed in the form

a b π \dfrac{a}{b} \sqrt{\pi }

with a , b a, b as positive coprime integers, find a + b a+b .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sam Bealing
Apr 3, 2016

As the limits are to infinity, x + 2016 x+2016 doesn't affect the integral so we can say:

e 25 9 ( x + 2016 ) 2 d x = e 25 9 ( x ) 2 d x = e ( 5 x 3 ) 2 d x \int_{-\infty }^{\infty} e^{-\frac{25}{9}(x+2016)^2} dx= \int_{-\infty }^{\infty} e^{-\frac{25}{9}(x)^2} dx=\int_{-\infty }^{\infty} e^{-(\frac{5x}{3})^2} dx

Substituting u = 5 x 3 3 5 d u = d x u=\frac{5x}{3} \Rightarrow \frac{3}{5} du=dx gives:

e ( 5 x 3 ) 2 d x = 3 5 e u 2 d u = 3 5 π \int_{-\infty }^{\infty} e^{-(\frac{5x}{3})^2} dx=\frac{3}{5}\int_{-\infty }^{\infty} e^{-u^2} du=\frac{3}{5}\sqrt{\pi}

So a = 3 , b = 5 a + b = 8 a=3,b=5 \Rightarrow a+b=8

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...